81 research outputs found

    Mucosal immunoglobulins at respiratory surfaces mark an ancient association that predates the emergence of tetrapods

    Get PDF
    Gas-exchange structures are critical for acquiring oxygen, but they also represent portals for pathogen entry. Local mucosal immunoglobulin responses against pathogens in specialized respiratory organs have only been described in tetrapods. Since fish gills are considered a mucosal surface, we hypothesized that a dedicated mucosal immunoglobulin response would be generated within its mucosa on microbial exposure. Supporting this hypothesis, here we demonstrate that following pathogen exposure, IgT(+) B cells proliferate and generate pathogen-specific IgT within the gills of fish, thus providing the first example of locally induced immunoglobulin in the mucosa of a cold-blooded species. Moreover, we demonstrate that gill microbiota is predominantly coated with IgT, thus providing previously unappreciated evidence that the microbiota present at a respiratory surface of a vertebrate is recognized by a mucosal immunoglobulin. Our findings indicate that respiratory surfaces and mucosal immunoglobulins are part of an ancient association that predates the emergence of tetrapods

    Cold-blooded vertebrates evolved organized germinal center-like structures

    Get PDF
    Germinal centers (GCs) or analogous secondary lymphoid microstructures (SLMs) are thought to have evolved in endothermic species. However, living representatives of their ectothermic ancestors can mount potent secondary antibody responses upon infection or immunization, despite the apparent lack of SLMs in these cold-blooded vertebrates. How and where adaptive immune responses are induced in ectothermic species in the absence of GCs or analogous SLMs remain poorly understood. Here, we infected a teleost fish (trout) with the parasite Ichthyophthirius multifiliis (Ich) and identified the formation of large aggregates of highly proliferating IgM+ B cells and CD4+ T cells, contiguous to splenic melanomacrophage centers (MMCs). Most of these MMC-associated lymphoid aggregates (M-LAs) contained numerous antigen (Ag)–specific B cells. Analysis of the IgM heavy chain CDR3 repertoire of microdissected splenic M-LAs and non–M-LA areas revealed that the most frequent B cell clones induced after Ich infection were highly shared only within the M-LAs of infected animals. These M-LAs represented highly polyclonal SLMs in which Ag-specific B cell clonal expansion occurred. M-LA–associated B cells expressed high levels of activation-induced cytidine deaminase and underwent significant apoptosis, and somatic hypermutation of Igμ genes occurred prevalently in these cells. Our findings demonstrate that ectotherms evolved organized SLMs with GC-like roles. Moreover, our results also point to primordially conserved mechanisms by which M-LAs and mammalian polyclonal GCs develop and function.publishedVersio

    Decreases in the Serum VLDL-TG/Non-VLDL-TG Ratio from Early Stages of Chronic Hepatitis C: Alterations in TG-Rich Lipoprotein Levels

    Get PDF
    BACKGROUND: The liver secretes very-low-density lipoproteins (VLDLs) and plays a key role in lipid metabolism. Plasma total triglyceride (TG) level variations have been studied in patients with hepatitis C virus (HCV)-related chronic hepatitis (CH-C). However, the results of these studies are variable. A homogenous assay protocol was recently proposed to directly measure the TG content in VLDL (VLDL-TG) and VLDL remnants. METHODOLOGY/PRINCIPAL FINDINGS: Using the assay protocol, we determined serum VLDL-TG levels in 69 fasting patients with biopsy-proven HCV-related chronic liver disease and 50 healthy subjects. Patients were classified into stages F0-F4 using the 5-point Desmet scale. Serum total TG levels in patients with non-cirrhotic (F1-F3) CH-C did not demonstrate significant differences compared with healthy subjects, but serum VLDL-TG levels did demonstrate significant differences. Mean serum VLDL-TG levels tended to decrease with disease progression from F1 to F4 (cirrhosis). Compared with healthy subjects, serum non-VLDL-TG levels significantly increased in patients with stages F2 and F3 CH-C; however, we observed no significant difference in patients with liver cirrhosis. Furthermore, the serum VLDL-TG/non-VLDL-TG ratio, when taken, demonstrated a significant decrease in patients with CH-C from the mildest stage F1 onward. CONCLUSIONS/SIGNIFICANCE: The decrease in serum VLDL-TG levels was attenuated by increase in non-VLDL-TG levels in patients with non-cirrhotic CH-C, resulting in comparable total TG levels. Results of previous studies though variable, were confirmed to have a logical basis. The decrease in the serum VLDL-TG/non-VLDL-TG ratio as early as stage F1 demonstrated TG metabolic alterations in early stages of CH-C for the first time. The involvement of TG metabolism in CH-C pathogenesis has been established in experimental animals, while conventional TG measurements are generally considered as poor indicators of CH-C progression in clinical practice. The serum VLDL-TG/non-VLDL-TG ratio, which focuses on TG metabolic alterations, may be an early indicator of CH-C
    • …
    corecore