SURFACE EXPRESSION OF TROUT CD4-1 AND CD4-2 DEFINES NOVEL POPULATIONS OF FUNCTIONALLY DISTINCT CD4⁺ T CELLS IN TELEOST FISH

Fumio Takizawa¹, Susana Magadan², David Parra³, Zhen Xu^{1,4}, Tomáš Korytář¹, Pierre Boudinot², J. Oriol Sunyer^{1,*}

¹Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA

²Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy-en-Josas, France

³Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain

⁴Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China

ABSTRACT

The largest subset of T cells in jawed vertebrates express a TCR bearing α and β chains that recognize antigens bound to MHC molecules. Such T cells use two main co-receptors, CD4 and CD8 which show mutually exclusive expression on naive helper T (Th) and cytotoxic T cells respectively. Tetrapods contain a single CD4 co-receptor with four immunoglobulin domains that likely arose from a primordial two-domain ancestor. Notably, teleost fish contain two CD4 genes. Like tetrapod CD4, CD4-1 of rainbow trout includes four-immunoglobulin domains while CD4-2 contains only two. Thus far the concurrent surface expression of CD4-1 and CD4-2 on teleost leukocytes has not been determined due to the lack of reagents capable of detecting both molecules in a single species. In the absence of those, transcript levels have been used to assess expression patterns of CD4-1 and CD4-2, but results in different teleost species have been inconclusive. Hence, very little is known regarding the existence of different teleost CD4⁺ T cells subsets and their roles in immunity. Here we generated monoclonal antibodies against trout CD4-1 and CD4-2 that enabled the identification of two bona fide CD4⁺ T-cell populations, a predominant lymphocyte population co-expressing surface CD4-1 and CD4-2 (CD4 DP) and a minor subset expressing only CD4-2 (CD4-2 SP). While both subsets produced equivalent levels of Th1, Th17, and Treg cytokines in response to Yersinia ruckeri infection, CD4-2 SP lymphocytes were less proliferative to PHA and alloantigen stimulations and displayed a more restricted TCRB repertoire. These data suggest that CD4-2 SP cells represent a functionally distinct population and may embody a vestigial CD4⁺ T cell subset, the roles of which reflect those of primeval CD4⁺ T cells. In addition, significant disparities in their transcriptomes as well as in their abundance in systemic and mucosal organs indicate further functional differences between CD4 DP and CD4-2 SP subsets. This study fills in an important gap in the knowledge of teleost CD4-bearing lymphocytes thus revealing critical insights into their functional roles and evolutionary origins. Importantly, as our knowledge on CD4⁺ T-cell responses in teleosts is very scarce, our findings will be critical for the design of more effective vaccines for fish that induce strong effector and memory CD4⁺ T cell responses.

KEYWORDS

CD4-1, CD4-2, CD4⁺ T cell, rainbow trout, cytokines

*Corresponding author. TEL.: 215-573-8592; Fax number: 215-898-7887 E-mail: sunyer@vet.upenn.edu