8 research outputs found
Weather in stellar atmosphere: the dynamics of mercury clouds in alpha Andromedae
The formation of long-lasting structures at the surfaces of stars is commonly
ascribed to the action of strong magnetic fields. This paradigm is supported by
observations of evolving cool spots in the Sun and active late-type stars, and
stationary chemical spots in the early-type magnetic stars. However, results of
our seven-year monitoring of mercury spots in non-magnetic early-type star
alpha Andromedae show that the picture of magnetically-driven structure
formation is fundamentally incomplete. Using an indirect stellar surface
mapping technique, we construct a series of 2-D images of starspots and
discover a secular evolution of the mercury cloud cover in this star. This
remarkable structure formation process, observed for the first time in any
star, is plausibly attributed to a non-equilibrium, dynamical evolution of the
heavy-element clouds created by atomic diffusion and may have the same
underlying physics as the weather patterns on terrestrial and giant planets.Comment: 10 pages, 2 figures; to be published in Nature Physic
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
V772 Cas: an ellipsoidal HgMn star in an eclipsing binary
keywords: stars: individual: V772 Cas (HD 10260), stars: early-type, stars: binaries: eclipsing, stars: chemically peculiar, Astrophysics - Solar and Stellar Astrophysics
archiveprefix: arXiv
primaryclass: astro-ph.SR
adsurl: https://ui.adsabs.harvard.edu/abs/2020MNRAS.tmp.3275K
adsnote: Provided by the SAO/NASA Astrophysics Data Systemstatus: publishe
Alkali metals in white dwarf atmospheres as tracers of ancient planetary crusts
White dwarfs that accrete the debris of tidally disrupted asteroids1 provide the opportunity to measure the bulk composition of the building blocks, or fragments, of exoplanets2. This technique has established a diversity of compositions comparable to what is observed in the Solar System3, suggesting that the formation of rocky planets is a generic process4. The relative abundances of lithophile and siderophile elements within the planetary debris can be used to investigate whether exoplanets undergo differentiation5, yet the composition studies carried out so far lack unambiguous tracers of planetary crusts6. Here we report the detection of lithium in the atmospheres of four cool (<5,000 K) and old (cooling ages of 5–10 Gyr ago) metal-polluted white dwarfs, of which one also displays photospheric potassium. The relative abundances of these two elements with respect to sodium and calcium strongly suggest that all four white dwarfs have accreted fragments of planetary crusts. We detect an infrared excess in one of the systems, indicating that accretion from a circumstellar debris disk is ongoing. The main-sequence progenitor mass of this star was 4.8 ± 0.2 M⊙, demonstrating that rocky, differentiated planets may form around short-lived B-type stars