4 research outputs found

    Field measurements and hydrodynamic modelling to evaluate the importance of factors controlling overwash

    Get PDF
    Overwash hydrodynamic datasets are mixed in quality and scope, being difficult to obtain due to fieldwork experimental limitations. Nevertheless, these measurements are crucial to develop reliable models to predict overwash. Aiming to overcome such limitations, this work presents accurate fieldwork data on overwash hydrodynamics, further exploring it to model overwash on a low-lying barrier island. Fieldwork was undertaken on Barreta Island (Portugal) in December 2013, during neap tides and under energetic conditions, with significant wave height reaching 2.6 m. During approximately 4 h, more than 120 shallow overwash events were measured with a video-camera, a pressure transducer and a current-meter. This high-frequency fieldwork dataset includes runup, overwash number, depth and velocity. Fieldwork data along with information from literature were used to implement XBeach model in non-hydrostatic mode (wave-resolving). The baseline model was tested for six verification cases; and the model was able to predict overwash in five. Based in performance metrics and the verification cases, it was considered that the Barreta baseline overwash model is a reliable tool for the prediction of overwash hydrodynamics. The baseline model was then forced to simulate overwash under different hydrodynamic conditions (waves and lagoon water level) and morpho-sedimentary settings (nearshore topography and beach grain-size), within the characteristic range of values for the study area. According to the results, the order of importance of factors controlling overwash predictability in the study area are: 1st) wave height (more than wave period) can promote overwash 3–4 times more intense than the one recorded during fieldwork; 2nd) nearshore bathymetry, particularly shallow submerged bars, can promote an average decrease of about 30% in overwash; 3rd) grain-size, finer sediment produced an 11% increase in overwash due to reduced infiltration; and 4th) lagoon water level, only negligible differences were evidenced by changes in the lagoon level. This implies that for model predictions to be reliable, accurate wave forecasts are necessary and topo-bathymetric configuration needs to be monitored frequently

    Hydrodynamic and sediment dynamic modifications of tidal flow in the near-field area of offshore breakwaters

    No full text
    Numerical modeling was used in order to study the effect of tidal currents within a breakwater scheme that has reached morphodynamic equilibrium. Tidal flow is simulated, using a downscaling procedure from a regional numerical model, in order to investigate the small-scale hydrodynamic modifications caused by the structures in the absence of waves. Sediment transport processes at different stages of the neap and spring tidal cycle are also considered over the entire scheme. Significant modifications to the tidal currents were identified, caused by the presence of the following structures: (1) obstruction of the main tidal flow and (2) flow channelization between the structures and the coastline, leading to flow acceleration over the salients. Furthermore, the effect of the modified tidal regime on bedload sediment transport processes was investigated. The design characteristics of the scheme (i.e., gap width, offshore distance, and relative angle with respect to the tidal currents) are found to influence locally the tidal flow and the bedload transport, over the top of the salients, modulating their growth. Despite being located in a mixed-energy, wave-dominated environment, the shear stress ratio between currents and waves show a dominance of tidal processes at the sheltered areas of the scheme (i.e., behind the breakwaters) that diminishes as the incident wave period increases. Hence, in order to correctly predict the morphological evolution of such coast under the influence of coastal protection schemes, the tidal processes have to be studied in addition to the wave processes

    Geomorphic Hazards in Spain

    No full text
    An overview of the main geomorphic hazards in Spain is presented. For each one of the processes analysed (floods, landslides, sinkholes, and coastal hazards), a brief description of their distribution, socioeconomic effects, and main causes is given. The main lines of research undertaken in recent times on these hazards, including development of new tools or techniques, are discussed. Finally, legislation and land-use planning measures for mitigation of risks due to such processes are described
    corecore