2,822 research outputs found

    A Bright Spatially-Coherent Compact X-ray Synchrotron Source

    Full text link
    Each successive generation of x-ray machines has opened up new frontiers in science, such as the first radiographs and the determination of the structure of DNA. State-of-the-art x-ray sources can now produce coherent high brightness keV x-rays and promise a new revolution in imaging complex systems on nanometre and femtosecond scales. Despite the demand, only a few dedicated synchrotron facilities exist worldwide, partially due the size and cost of conventional (accelerator) technology. Here we demonstrate the use of a recently developed compact laser-plasma accelerator to produce a well-collimated, spatially-coherent, intrinsically ultrafast source of hard x-rays. This method reduces the size of the synchrotron source from the tens of metres to centimetre scale, accelerating and wiggling a high electron charge simultaneously. This leads to a narrow-energy spread electron beam and x-ray source that is >1000 times brighter than previously reported plasma wiggler and thus has the potential to facilitate a myriad of uses across the whole spectrum of light-source applications.Comment: 5 pages, 4 figure

    Chitosan/TPP microparticles obtained by microemulsion method applied in controlled release of heparin

    Get PDF
    AbstractThis work deals with the preparation of chitosan/tripolyphosphate microparticles (CHT/TPP) using microemulsion system based on water/benzyl alcohol. The morphology of the microparticles was evaluated by scanning electron microscopy (SEM). The microparticles were also characterized through infrared spectroscopy (FTIR) and wide-angle X-ray scattering (WAXS). The morphology and crystallinity of microparticles depended mainly on CHT/TPP ratio. Studies of controlled release of HP were evaluated in distilled water and in simulated gastric fluid. Besides, the profile of HP releasing could be tailored by tuning the CHT/TPP molar ratio. Finally, these prospective results allow the particles to be employed as site-specific HP controlled release system

    Genetic diversity of Brazilian isolates of feline immunodeficiency virus

    Get PDF
    We isolated Feline immunodeficiency virus (FIV) from three adult domestic cats, originating from two open shelters in Brazil. Viruses were isolated from PBMC following co-cultivation with the feline T-lymphoblastoid cell line MYA-1. All amplified env gene products were cloned directly into pGL8MYA. The nucleic acid sequences of seven clones were determined and then compared with those of previously described isolates. The sequences of all of the Brazilian virus clones were distinct and phylogenetic analysis revealed that all belong to subtype B. Three variants isolated from one cat and two variants were isolated from each of the two other cats, indicating that intrahost diversity has the potential to pose problems for the treatment and diagnosis of FIV infection

    BAs and boride III-V alloys

    Full text link
    Boron arsenide, the typically-ignored member of the III-V arsenide series BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an X_1c-like indirect band gap, and its bond charge is distributed almost equally on the two atoms in the unit cell, exhibiting nearly perfect covalency. The reasons for these are tracked down to the anomalously low atomic p orbital energy in the boron and to the unusually strong s-s repulsion in BAs relative to most other III-V compounds. We find unexpected valence band offsets of BAs with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is significantly higher than that of AlAs, despite the much smaller bond length of BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects result from the unusually strong mixing of the cation and anion states at the VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and composition-independent band gap bowing. This means that while addition of small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing enthalpies which are smaller than in GaN-GaAs alloys. The unique features of boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for publication in Phys. Rev. B. Scheduled to appear Oct. 15 200

    Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.

    Get PDF
    Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy

    Affibody-Based PET Imaging to Guide EGFR-Targeted Cancer Therapy in Head and Neck Squamous Cell Cancer Models.

    Get PDF
    In head and neck squamous cell cancer, the human epidermal growth factor receptor 1 (EGFR) is the dominant signaling molecule among all members of the family. So far, cetuximab is the only approved anti-EGFR monoclonal antibody used for the treatment of head and neck squamous cell cancer, but despite the benefits of adding it to standard treatment regimens, attempts to define a predictive biomarker to stratify patients for cetuximab treatment have been unsuccessful. We hypothesized that imaging with EGFR-specific radioligands may facilitate noninvasive measurement of EGFR expression across the entire tumor burden and allow for dynamic monitoring of cetuximab-mediated changes in receptor expression. Methods: EGFR-specific Affibody molecule (ZEGFR:03115) was radiolabeled with 89Zr and 18F. The radioligands were characterized in vitro and in mice bearing subcutaneous tumors with varying levels of EGFR expression. The protein dose for imaging studies was assessed by injecting 89Zr-deferoxamine-ZEGFR:03115 (2.4-3.6 MBq, 2 μg) either together with or 30 min after increasing amounts of unlabeled ZEGFR:03115 (1, 5, 10, 15, and 20 μg). PET images were acquired at 3, 24, and 48 h after injection, and the image quantification data were correlated with the biodistribution results. The EGFR expression and biodistribution of the tracer were assessed ex vivo by immunohistochemistry, Western blot, and autoradiography. To downregulate the EGFR level, treatment with cetuximab was performed, and 18F-aluminium fluoride-NOTA-ZEGFR:03115 (12 μg, 1.5-2 MBq/mouse) was used to monitor receptor changes. Results: In vivo studies demonstrated that coinjecting 10 μg of nonlabeled molecules with 89Zr-deferoxamine-ZEGFR:03115 allows for clear tumor visualization 3 h after injection. The radioconjugate tumor accumulation was EGFR-specific, and PET imaging data showed a clear differentiation between xenografts with varying EGFR expression levels. A strong correlation was observed between PET analysis, ex vivo estimates of tracer concentration, and receptor expression in tumor tissues. Additionally, 18F-aluminium fluoride-NOTA-ZEGFR:03115 could measure receptor downregulation in response to EGFR inhibition. Conclusion: ZEGFR:03115-based radioconjugates can assess different levels of EGFR level in vivo and measure receptor expression changes in response to cetuximab, indicating a potential for assessment of adequate treatment dosing with anti-EGFR antibodies

    HER3-Mediated Resistance to Hsp90 Inhibition Detected in Breast Cancer Xenografts by Affibody-Based PET Imaging.

    Get PDF
    Purpose: Recent studies have highlighted a role of HER3 in HER2-driven cancers (e.g., breast cancer), implicating the upregulation of the receptor in resistance to HER-targeted therapies and Hsp90 inhibitors (e.g., AUY922). Therefore, we have developed an affibody-based PET radioconjugate that quantitatively assesses HER3 changes induced by Hsp90 inhibition in vivoExperimental Design: ZHER3:8698 affibody molecules were conjugated via the C-terminus cysteine to DFO-maleimide for 89Zr radiolabeling. The probe was characterized in vitro and in vivo in a panel of human breast cell lines and xenograft models with varying HER3 receptor levels. In addition, the radioconjugate was investigated as a tool to monitor the outcome of AUY922, an Hsp90 inhibitor, in an MCF-7 xenograft model.Results: We demonstrated that 89Zr-DFO-ZHER3:8698 can track changes in receptor expression in HER3-positive xenograft models and monitor the outcome of AUY922 treatment. Our in vitro findings showed that MCF-7 cells, which are phenotypically different from BT474, develop resistance to treatment with AUY922 through HER3/IGF-1Rβ-mediated signaling. Of note, the lack of response in vitro due to HER3 recovery was confirmed in vivo using 89Zr-DFO-ZHER3:8698-based imaging. Upon AUY922 treatment, higher radioconjugate uptake was detected in treated MCF-7 xenografts, correlating with an AUY922-induced HER3 upregulation concomitant with an increase in IGF-1Rβ expression.Conclusions: These data underline the potential of HER3-based PET imaging to noninvasively provide information about HER3 expression and to identify patients not responding to targeted therapies due to HER3 recovery. Clin Cancer Res; 24(8); 1853-65. ©2018 AACR

    The 24-h Energy Intake of Obese Adolescents Is Spontaneously Reduced after Intensive Exercise: A Randomized Controlled Trial in Calorimetric Chambers

    Get PDF
    Background: Physical exercise can modify subsequent energy intake and appetite and may thus be of particular interest in terms of obesity treatment. However, it is still unclear whether an intensive bout of exercise can affect the energy consumption of obese children and adolescents. [br/] Objective: To compare the impact of high vs. moderate intensity exercises on subsequent 24-h energy intake, macronutrient preferences, appetite sensations, energy expenditure and balance in obese adolescent. [br/] Design: This randomized cross-over trial involves 15 obese adolescent boys who were asked to randomly complete three 24-h sessions in a metabolic chamber, each separated by at least 7 days: (1) sedentary (SED); (2) Low-Intensity Exercise (LIE) (40% maximal oxygen uptake, VO(2)max); (3) High-Intensity Exercise (HIE) (75% VO(2)max). Results: Despite unchanged appetite sensations, 24-h total energy intake following HIE was 6-11% lower compared to LIE and SED (p<0.05), whereas no differences appeared between SED and LIE. Energy intake at lunch was 9.4% and 8.4% lower after HIE compared to SED and LIE, respectively (p<0.05). At dinner time, it was 20.5% and 19.7% lower after HIE compared to SED and LIE, respectively (p<0.01). 24-h energy expenditure was not significantly altered. Thus, the 24-h energy balance was significantly reduced during HIE compared to SED and LIE (p<0.01), whereas those of SED and LIE did not differ. [br/] Conclusions: In obese adolescent boys, HIE has a beneficial impact on 24-h energy balance, mainly due to the spontaneous decrease in energy intake during lunch and dinner following the exercise bout. Prescribing high-intensity exercises to promote weight loss may therefore provide effective results without affecting appetite sensations and, as a result, food frustrations
    corecore