8,012 research outputs found

    Process and material flow design for vise manufacturing with routing sheet and from to chart

    Get PDF
    Process design is important steps in production layout planning. At this step, processes and machines for making parts and products are identified. Then these processes and machines are arranged so the flow of materials can be minimized. Vise is a support tool for various manufacturing processes such as cutting, drilling and grinding. Vise consist of various parts such as platform base, body and clamping parts. To make these various parts several manufacturing processes are required. This paper aims to demonstrate the use of routing sheet to identify processes and machines to manufacture vise as well as to show the use of from to chart to arrange those machines in order to minimize material flows. Several machines configurations with minimum material flows are presented

    Volcanic ash supply to the surface ocean – remote sensing of biological responses and their wider biogeochemical significance

    Get PDF
    Transient micronutrient enrichment of the surface ocean can enhance phytoplankton growth rates and alter microbial community structure with an ensuing spectrum of biogeochemical feedbacks. Strong phytoplankton responses to micronutrients supplied by volcanic ash have been reported recently. Here we: (i) synthesize findings from these recent studies; (ii) report the results of a new remote sensing study of ash fertilization; and (iii) calculate theoretical bounds of ash-fertilized carbon export. Our synthesis highlights that phytoplankton responses to ash do not always simply mimic that of iron amendment; the exact mechanisms for this are likely biogeochemically important but are not yet well understood. Inherent optical properties of ash-loaded seawater suggest rhyolitic ash biases routine satellite chlorophyll-a estimation upwards by more than an order of magnitude for waters with 0.5 mg chlorophyll-a m-3. For this reason post-ash-deposition chlorophyll-a changes in oligotrophic waters detected via standard Case 1 (open ocean) algorithms should be interpreted with caution. Remote sensing analysis of historic events with a bias less than a factor of 2 provided limited stand-alone evidence for ash-fertilization. Confounding factors were poor coverage, incoherent ash dispersal, and ambiguity ascribing biomass changes to ash supply over other potential drivers. Using current estimates of iron release and carbon export efficiencies, uncertainty bounds of ash-fertilized carbon export for 3 events are presented. Patagonian iron supply to the Southern Ocean from volcanic eruptions is less than that of windblown dust on thousand year timescales but can dominate supply at shorter timescales. Reducing uncertainties in remote sensing of phytoplankton response and nutrient release from ash are avenues for enabling assessment of the oceanic response to large-scale transient nutrient enrichment

    Scalable and Transfer-Free Fabrication of MoS2/SiO2 Hybrid Nanophotonic Cavity Arrays with Quality Factors Exceeding 4000

    Get PDF
    We report the fully-scalable fabrication of a large array of hybrid molybdenum disulfide (MoS2) -silicon dioxide (SiO2) one-dimensional, free-standing photonic-crystal cavities capable of enhancement of the MoS2 photoluminescence at the narrow cavity resonance. We demonstrate continuous tunability of the cavity resonance wavelength across the entire emission band of MoS2 simply by variation of the photonic crystal periodicity. Device fabrication started by substrate-scale growth of MoS2 using chemical vapor deposition (CVD) on non-birefringent thermal oxide on a silicon wafer;it was followed by lithographic fabrication of a photonic crystal nanocavity array on the same substrate at more than 50% yield of functional devices. Our cavities exhibit three dominant modes with measured linewidths less than 0.2 nm, corresponding to quality factors exceeding 4000. All experimental findings are found to be in excellent agreement with finite difference time domain (FDTD) simulations. CVD MoS2 provides scalable access to a direct band gap, inorganic, stable and efficient emitter material for onchip photonics without the need for epitaxy and is at CMOS compatible processing parameters even for back-end-of-line integration;our findings suggest feasibility of cavity based line-narrowing in MoS2-based on-chip devices as it is required for instance for frequency-multiplexed operation in on-chip optical communication and sensing

    Pitfalls of using the risk ratio in meta‐analysis

    Get PDF
    For meta-analysis of studies that report outcomes as binomial proportions, the most popular measure of effect is the odds ratio (OR), usually analyzed as log(OR). Many meta-analyses use the risk ratio (RR) and its logarithm, because of its simpler interpretation. Although log(OR) and log(RR) are both unbounded, use of log(RR) must ensure that estimates are compatible with study-level event rates in the interval (0, 1). These complications pose a particular challenge for random-effects models, both in applications and in generating data for simulations. As background we review the conventional random-effects model and then binomial generalized linear mixed models (GLMMs) with the logit link function, which do not have these complications. We then focus on log-binomial models and explore implications of using them; theoretical calculations and simulation show evidence of biases. The main competitors to the binomial GLMMs use the beta-binomial (BB) distribution, either in BB regression or by maximizing a BB likelihood; a simulation produces mixed results. Two examples and an examination of Cochrane meta-analyses that used RR suggest bias in the results from the conventional inverse-variance-weighted approach. Finally, we comment on other measures of effect that have range restrictions, including risk difference, and outline further research

    Competition-based model of pheromone component ratio detection in the moth

    Get PDF
    For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy

    Apology and forgiveness evolve to resolve failures in cooperative agreements

    Get PDF
    Making agreements on how to behave has been shown to be an evolutionarily viable strategy in one-shot social dilemmas. However, in many situations agreements aim to establish long-term mutually beneficial interactions. Our analytical and numerical results reveal for the first time under which conditions revenge, apology and forgiveness can evolve and deal with mistakes within ongoing agreements in the context of the Iterated Prisoners Dilemma. We show that, when the agreement fails, participants prefer to take revenge by defecting in the subsisting encounters. Incorporating costly apology and forgiveness reveals that, even when mistakes are frequent, there exists a sincerity threshold for which mistakes will not lead to the destruction of the agreement, inducing even higher levels of cooperation. In short, even when to err is human, revenge, apology and forgiveness are evolutionarily viable strategies which play an important role in inducing cooperation in repeated dilemmas.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore