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Abstract

For meta-analysis of studies that report outcomes as binomial proportions,

the most popular measure of effect is the odds ratio (OR), usually analyzed as

log(OR). Many meta-analyses use the risk ratio (RR) and its logarithm, be-

cause of its simpler interpretation. Although log(OR) and log(RR) are both

unbounded, use of log(RR) must ensure that estimates are compatible with

study-level event rates in the interval (0, 1). These complications pose a partic-

ular challenge for random-effects models, both in applications and in generating

data for simulations. As background we review the conventional random-effects

model and then binomial generalized linear mixed models (GLMMs) with the

logit link function, which do not have these complications. We then focus on

log-binomial models and explore implications of using them; theoretical cal-

culations and simulation show evidence of biases. The main competitors to

the binomial GLMMs use the beta-binomial (BB) distribution, either in BB

regression or by maximizing a BB likelihood; a simulation produces mixed re-

sults. Two examples and an examination of Cochrane meta-analyses that used

RR suggest bias in the results from the conventional inverse-variance-weighted

approach. Finally, we comment on other measures of effect that have range

restrictions, including risk difference, and outline further research.

Keywords: Relative risk, risk difference, response ratio, log-binomial model, beta-

binomial model

1 Introduction

For meta-analysis of studies that report binary outcomes (usually summarized as

the number of subjects who had an event and the number who had no event, in a

treatment group and a control group), the most popular measure of effect is the odds

ratio (OR), usually analyzed in the log scale, as the difference in log-odds between

the two groups. Many meta-analyses, however, use the risk ratio (RR), the ratio of

the probability of an event in the treatment group (πT ) to that in the control group
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(πC). Importantly, the benefits of analyzing log(RR) are offset by the restrictions

πC < 1 and πT < 1, which need to be explicitly applied to their estimates, unlike

in the analysis of log(OR). Thus, one must balance the mathematical convenience

of the odds ratio against the simpler interpretation of the risk ratio.

When πC and πT are small (e.g., < .1), OR ≈ RR. If πC or πT is not small, how-

ever, RR (also called the relative risk) is often considered a better measure of effect

than OR, despite the latter’s mathematical convenience. In applications the RR and

its complement, the percentage reduction in risk, have a direct interpretation. Fleiss

et al.1 point out that Cornfield2 proposed the odds ratio, in 1951, only because it

provided a good approximation to the relative risk. (Interestingly, Cornfield2 did

not use the term “odds ratio.”) In general, when πT < πC , OR < RR < 1; and

when πT > πC , OR > RR > 13. That is, OR is always farther from 1 than RR.

Various authors have discussed reasons for choosing RR instead of OR and the ease

with which OR can be misinterpreted (e.g., Sinclair and Bracken4, Sackett et al.5,

Altman et al.6, Deeks7, Newcombe8). The OR is necessary in case-control studies

(where the risk ratio cannot be estimated directly), and it readily allows adjustment

for covariates via logistic regression, but those applications are usually separate from

meta-analysis.

When a population consists of strata, it may be possible to summarize an effect

more simply if the measure for the entire sample adequately represents the stratum-

specific measures, that is, if the measure of effect can be collapsed over the strata.

The risk ratio for the entire sample must lie within the range of the stratum-specific

risk ratios, but the odds ratio for the entire sample can be closer to 1 than the odds

ratio for any of the strata9. Even in ideal cases in which the risk ratio or odds ratio is

the same in all strata, however, the corresponding measure for the entire population

may not equal that common value. Certain conditions must hold for collapsibility

of the risk ratio or the odds ratio10.

Methods for meta-analysis of risk ratios have received much less attention than

methods for odds ratios, in part because analysis of their performance involves com-

plications arising mainly from the restrictions on the ranges of π̂C and π̂T . The

impact of those complications on actual meta-analyses is not widely understood and

may not be apparent to users. We discuss the role of the restrictions in models for

fixed-effect and, especially, random-effects meta-analysis, examine their impact on

generation of data for simulation studies and on the results, and deduce their likely

contribution to bias in examples and in a sizable number of Cochrane reviews. As

background, Section 2 reviews the conventional random-effects model (REM), which

uses the sample log-odds-ratio or log-risk-ratio as the measure of effect.

To avoid the assumptions and approximations in the conventional methods, an

alternative approach bases the analysis on the likelihood for pairs of independent bi-

nomial distributions. Section 3 discusses this approach, an application of generalized

linear mixed models (GLMMs) with the logit and log transformations as the usual

link functions and normal as the usual distribution of random effects. In random-

effects models for the log-risk-ratio, the constraint on πT imposes a truncation on

the distribution of the random effects; we use simulation to explore the impact on
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estimation of the between-study variance (τ2) and the overall log-risk-ratio.

The main alternative to the binomial GLMMs is beta-binomial regression. The

beta-binomial (BB) distribution arises as a mixture of binomial distributions in

which the probability of an event, p, follows a beta distribution. Section 4 reviews

the beta-binomial distribution and BB regression and discusses its application in

meta-analysis of log-risk-ratios.In Section 5 we analyze two examples to compare

conventional procedures and the procedures based on beta-binomial distributions.

Using a collection of 1286 meta-analyses of RR, in a 2004 Cochrane Library issue,

we explore (in Section 6) several practical implications of the restriction on the

range of the binomial rates (represented by truncation of the distribution of random

effects). Finally, the discussion in Section 7 puts our investigation and results in

perspective. We have focused on the risk ratio, but other measures of effect also

have range restrictions, including risk difference, response ratio (i.e., the log of the

ratio of means), and arcsin(
√
p) for binomial proportions; methods for these need

further research.

2 Conventional random-effects model

Random-effects meta-analysis aims to estimate an overall effect, θ, defined as the

mean of a distribution of study-level effects whose variance is τ2. When τ2 = 0,

the random-effects model reduces to the fixed-effect model. For the usual choice

of a normal distribution, the effects in the individual studies are θj ∼ N(θ, τ2),

j = 1, . . . ,K. Study j yields the estimate yj of θj , along with an estimate, s2j , of

its within-study variance, σ2j . For some measures of effect, such as mean difference

(i.e., the difference between the mean outcome in the treatment group and the mean

outcome in the control group), yj and θj are in the same scale as the data. For other

measures, yj comes from applying a transformation to the data of Study j or to a

summary measure based on those data. In the most common example y is the log

of the sample odds ratio for the occurrence of an event.

The theory associated with the conventional random-effects analysis assumes

that the distribution of yj can be adequately approximated by N(θj , σ
2
j ). In the

resulting normal-normal model, the marginal distribution of yj is N(θj , σ
2
j +τ2). The

conventional approach then estimates θ by a weighted mean of the yj with inverse-

variance weights. Theory yields the optimal weights, 1/(σ2j + τ2), but both σ2j and

τ2 are unknown. Thus, applications use s2j instead of σ2j and estimate τ2, producing

the weights wj = 1/(s2j + τ̂2). A key assumption is that one can substitute s2j for

σ2j without allowing for its variability. Despite its documented shortcomings11;12,

this approach has remained an acceptable part of research on random-effects meta-

analysis, and it serves as the basis for most applications. For the log-odds-ratio, for

example, the logit transformation yields the logit-normal-normal model: if njC and

yjC denote the sample size and number of events in the control group of Study j

and njT and yjT are the corresponding data in the treatment group, the log of the
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sample odds ratio is

yj = log(pjT /(1− pjT ))− log(pjC/(1− pjC)) = logit(pjT )− logit(pjC)

where pjT = yjT /njT and pjC = yjC/njC , which results in the estimate of the

log-odds-ratio

yj = log

(
yjT /(njT − yjT )

yjC/(njC − yjC)

)
,

and the customary estimate of its variance is

s2j =
1

yjT
+

1

njT − yjT
+

1

yjC
+

1

njC − yjC

(though in common use, these estimates are biased13); if the 2 × 2 table contains

one zero cell, 0.5 is usually added to all four cells; if the 2×2 table contains two zero

cells, Study j is omitted from the analysis. The assumption of a normal distribution

for yj in typical finite samples, however, has little empirical support, and correlation

between yj and s2j is a potential source of bias.

Similarly, the log of the sample risk ratio,

yj = log(pjT )− log(pjC),

results in the estimate

yj = log

(
yjT /njT
yjC/njC

)
,

and the customary estimate of its variance is

s2j =
1

yjT
− 1

njT
+

1

yjC
− 1

njC

(as above, these estimates are biased14).

3 Binomial GLMMs

For the important class of applications in which the individual outcome is binary,

the available data from each study usually include the sample size and number of

events in each group. Then a likelihood-based analysis can avoid the assumptions

and approximations of using a normal distribution for yj . For simplicity, we consider

only generalized linear mixed models based on the summary data available from K

2 × 2 tables (i.e., the numbers of events YjC and YjT out of njC and njT binomial

trials, with probability of an event πjC and πjT , respectively). In their discussion

of these multilevel models, Turner et al.15 use the term “individual data methods”

when the individual subjects’ data are binary (and “summary data methods” when

the measure of effect is the sample log-odds-ratio), but their analyses use the data

from 2× 2 tables.
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This section reviews logistic linear mixed models, discusses log-binomial models

and their complications, and examines the consequences of using the log-binomial-

normal model to generate data.

We assume that, given the probabilities πji,

Yji|πji ∼ Binomial(nji, πji) for i = C, T and j = 1, . . . ,K. (1)

For link function g the basic GLMM for random-effects meta-analysis of treatment

versus control is

g(πji) = αj + (θ + bj)xi, (2)

where, for Study j, αj is the control group effect; θ is the overall treatment effect; bj is

the random treatment effect, representing the departure of Study j’s true treatment

effect (θj) from θ; and xi is an indicator variable for the treatment group (xC = 0,

xT = 1); the bj are independent, and usually bj ∼ N(0, τ2).

The most common link function is the logit transformation g(π) = logit(π) =

log(π/(1−π)). The resulting mixed-effects logistic regression, with log-odds-ratio as

the effect measure, belongs to the class of generalized linear mixed models, discussed

in meta-analysis by Turner et al.15 and Stijnen et al.16. We also consider the log link,

which corresponds to the log-risk-ratio. Meta-regression models expand Equation

(2) to include study-level covariates.

For actual analyses and for simulation studies of log-odds-ratios, the two-level

logit-binomial-normal model is attractive, for several reasons: log-odds is compatible

with binomial likelihoods, the values of θ are not bounded, and it is not necessary to

rely on asymptotic normality of the sample log(OR). This model is logistic regression

with a random effect. Conveniently, it can be fitted by all modern software for

GLMMs. Alternatively, one can use a conditional hypergeometric-normal model,

implemented in SAS NLMIXED16 and in R in metafor17.

3.1 Logistic linear mixed models

As background for examining the log link function and the log-binomial models for

the log-risk-ratio, we review the more-familiar logistic linear mixed models (LMMs).

3.1.1 Fixed-effects logistic model

The standard fixed-effects logistic model does not account for heterogeneity of the

odds-ratios between studies. Assuming a binomial distribution in the two arms, the

model is (j = 1, . . . ,K)

log

(
πji

1− πji

)
= αj + θxi (3)

where the αj are fixed control group effects (usually regarded as nuisance parame-

ters) and θ is the overall log-odds-ratio. The K+ 1 parameters of this model can be

estimated using maximum likelihood (ML).
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3.1.2 Logistic linear mixed models

A basic mixed-effects logistic regression model fits fixed effects for the studies’ control

groups and accounts for heterogeneity in odds-ratios among studies. Given the

binomial distributions in the two arms (1), the model is (j = 1, . . . ,K)

log

(
πji

1− πji

)
= αj + (θ + bj)xi, (4)

where the αj are fixed control group effects (usually regarded as nuisance param-

eters), θ is the overall log-odds-ratio, bj ∼ N(0, τ2) are random effects, and τ2 is

the between-study variance. The fixed study-specific intercepts αj have to be es-

timated, along with θ and τ2. These K + 2 parameters are estimated iteratively,

using marginal quasi-likelihood, penalized quasi-likelihood, or a first- or second-

order Taylor-expansion approximation. A fixed-effect meta-analysis corresponds to

τ2 = 0.

As K becomes large, it may be inconvenient, even problematic, to have a separate

αj for each study. One can replace those fixed effects with random effects α + uj ,

centered at α:

log

(
πji

1− πji

)
= α+ uj + (θ + bj)xi. (5)

As before, θ is the overall log-odds-ratio, and bj ∼ N(0, τ2). Now uj ∼ N(0, σ2),

and uj and bj can be correlated: Cov(uj , bj) = ρστ . Heterogeneity of log-odds in

the control groups is represented by the variance σ2, and in the treatment groups,

by σ2 + 2ρστ + τ2. In contrast, the conventional random-effects model, which works

with the sample log-odds-ratios, involves only a single between-study variance, τ2.

Turner et al.15 point out that ρ should be estimated. Assuming that ρ = 0 would

impose the potentially inappropriate restriction that the variation among trials for

control groups (σ2) must be less than or equal to the variation among trials for

treatment groups (σ2 + τ2).

Estimation of α, µ, σ2, τ2 and ρ is similar to estimation of the parameters in

Model (4) (Turner et al.15). The related bivariate logistic-normal model discussed

by Stijnen et al.16 assumes a bivariate normal distribution for log-odds in the two

arms of each study.

3.2 Log-binomial models

This section examines the use of the log link function in binomial GLMs and

GLMMs.

3.2.1 Fixed-effects log-binomial model

The log-binomial model is a constrained GLM with the log link function:

log(πjC) = αj ≤ 0,

log(πjT ) = αj + θ ≤ 0.
(6)
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As in the logistic model, the αj are nuisance parameters; here θ is the overall log-risk-

ratio. The linear constraints in (6) guarantee that πjC < 1 and πjT < 1. Likelihood-

based methods must ensure that the estimates satisfy these restrictions. They may

cause convergence problems, but neglecting them may lead to wrong estimates. Luo

et al.18 provide a brief review of the existing methods and the requisite R code. They

propose an adaptive-barrier approach to ML estimation that is easily implemented

in R, and they compare several methods by simulation. An approach by Donoghoe

and Marschner19 based on the EM algorithm is implemented in the R package

logbin20. Marschner21 gives a comprehensive review of contemporary maximum-

likelihood and alternative methods, mostly based on unconstrained quasi-likelihood

estimation procedures.

3.2.2 Log-binomial linear mixed models

To the authors’ knowledge, no theoretical developments so far have produced log-

binomial mixed models. The main reason, in our opinion, is the restricted parameter

space. We now examine this in more detail. In Model (4) mechanically replacing the

logit link function by the log link produces the following model for the log-risk-ratio:

log(πji) = αj + (θ + bj)xi, bj ∼ N(0, τ2); j = 1, . . . ,K; i = C, T. (7)

Here the αj = log(πjC) < 0, but the restriction πjT < 1 implies that

bj < −log(πjC)− θ, j = 1, . . . ,K. (8)

The probability that bj satisfies this restriction is Φ((−log(πjC) − θ)/τ), where Φ

is the cumulative distribution function of the standard normal distribution. Thus,

as written, the model in Equation (7) is improper. If πjC and θ are very small,

this probability may be almost 1, so that the restriction has little impact; but for

moderate πjC and/or larger values of θ, it becomes a serious issue. As an example,

for τ2 = 1 and θ = 0 the probability is 0.989 when πjC = 0.1 and 0.886 when

πjC = 0.3, decreasing to 0.904 and 0.581 when θ = 1. These probabilities apply to

an individual bj . For τ2 = 1, θ = 0, and πjC = 0.1, for example, the probability that

all K of the bj satisfy the restriction is (0.989)K , which equals 0.948 when K = 5,

0.898 when K = 10, and 0.807 when K = 20. To summarise, restriction (8) is not

compatible with the model (7), which needs to be replaced by an appropriate model.

A simple modification by Warn et al.22, in the context of Bayesian modelling of RR

and RD, replaces Equation (7) by

log(πji) = αj + (θ + bUj )xi, bj ∼ N(0, τ2);

bUj = min(−log(πjC)− θ, bj); j = 1, . . . ,K; i = C, T.
(9)

This introduces a point mass of probability 1 − Φ(β) at c∗j , equal to or just below

cj = −log(πjC)−θ, for β = (c∗j−θ)/τ and, equivalently, imputes the values of πjT at

or just below 1. Rhodes et al.23 use this model for Bayesian analysis of inconsistency

in the Cochrane database.
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An alternative truncates the normal distribution of random effects (bj) from the

right at Aj = −log(πjC)−θ. We denote the Normal distribution N(µ, σ2) truncated

from above at A by TN(µ, σ2, A). Then the model is

log(πji) = αj+(θ+bj)xi, bj ∼ TN(0, τ2,−log(πjC)−θ); j = 1, . . . ,K; i = C, T.

(10)

Instead of implementing the restriction in Equation (8), an impossible task, both

models distort the distribution of θj . Restrictions depending on the values of πjC
and θ make both models very artificial.

In both models, the expected value of the log-risk-ratio, E(θj) no longer equals

θ, the overall log-risk-ratio in Equation (7). The expected value of θj in Model (9)

is

E(θj) = θ − 1√
2πτ2

∫ ∞
c∗

x exp(−
(
(x− θ)/τ

)2
)dx+ c∗(1− Φ(β)) < θ,

where φ is the probability density function of the standard normal distribution and

c∗ = −log(πjC). A parallel calculation yields E(θ2j ) and hence Var(θj).

Next we determine the corresponding mean and variance of θj in Model (10).

For X having a TN(µ, τ2, A) distribution, let β = (A− µ)/τ . Then (see, e.g., Barr

and Sherrill24)

E(X) = µ− τ φ(β)

Φ(β)
and Var(X) = τ2

[
1− β φ(β)

Φ(β)
−
(
φ(β)

Φ(β)

)2
]
.

In our context A = −log(πCj), µ = θ and β = (−log(πCj) − θ)/τ . Therefore, the

mean of θj is less than θ, and it decreases with increasing πjC . The variance of θj is

noticeably smaller than τ2, decreasing as πjC increases. This model is also clearly

not satisfactory.

Importantly, in both models, the expected values of the log-risk-ratios θj depend

on the individual values of πjC , making the meta-analysis of the θj rather pointless.

In Section 3.3 we consider in more detail what happens when Model (7) is used

and the restrictions are neglected. As we shall see, this mistake results in consider-

able biases. Overall, we find the log-binomial LMMs with fixed αj not suitable for

modeling the risk ratio.

The analog of Model (5), with random effects for the control groups, is

log(πji) = α+uj+(θ+bj)xji, bj ∼ N(0, τ2), uj ∼ N(0, σ2) and Cov(uj , bj) = ρστ.

(11)

This model involves even more restrictions:

uj < −log(πjC)− α, bj + uj < −log(πjC)− α− θ, j = 1, . . . ,K, (12)

so it also is not suitable.

To summarize, we do not think that a GLMM with the log link is a feasible

option for modeling relative risk.
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3.3 Generating data from the log-binomial LMM

In this section we discuss the consequences of using the log-binomial-normal mixed

model, Equation (7), to generate data, and we use a small simulation study for

illustration.

3.3.1 Practicalities

In practice the studies in a meta-analysis come from a systematic review, bringing

with them the underlying pairs of event probabilities, (πjC , πjT ). For random-effects

models it is convenient to regard the (πjC , πjT ), and hence the (logπjC , logπjT ), as a

sample from some bivariate distribution. We can also approach the joint distribution

of (πjC , πjT ) via the marginal distribution of πjC and the conditional distribution

of πjT given πjC and a value of θ. Thus, to obtain data from the log-binomial

LMM for meta-analysis of log-risk-ratio, we can choose values of πjC , generate study

effects θj from N(θ, τ2), calculate the πjT = πjC exp(θj), generate observations YjC
from the Binomial(njC , πjC) distributions, and generate observations YjT from the

Binomial(njT , πjT ) distributions. (This approach parallels a common method of

generating data for meta-analyses of odds ratios.)

However, this process may produce values of πjT > 1. As a remedy one has

two practical options: either impute values of πjT at or slightly below 1, or re-

ject values of θj that are too large and generate replacement values of θj . The

first option is equivalent to using Model (9), and the second option (rejection sam-

pling) is equivalent to truncating the normal distribution of random effects (bj) as

in Model (10). Both options introduce bias; that is, E(θj) no longer equals θ, the

overall log-risk-ratio in Equation (7). The first option appears to be more popular

in meta-analysis. IntHout et al.25 use it in their simulations. The second option

seems uncommon, but many authors who use simulation in meta-analysis do not

report details of implementation. Some authors use “truncate” but create a point

mass (e.g., Panityakul et al.26). Pedroza and Truong27 use truncation in simulating

risk difference in multicenter trials. Both options aim to approximate the actual

situation, in which πjC < 1 and πjT < 1. The basic difficulty lies in using a nor-

mal distribution for the random effects. A different approach is required to obtain

unbiased inference, or the bias needs to be estimated and eliminated.

3.3.2 Simulation study

To evaluate the size of these biases in conventional random-effects meta-analysis

(i.e., the log-normal-normal model, Section 2), we conducted a small simulation

study of the two options for generating data from a log-binomial LMM. We used

equal sample sizes njC = njT = n/2 and the same value of πC for all studies. We

set K = 5, 10, 20; n = 100, 200, 500; θ = −1.5, −1, −0.5, 0, 0.5, 1, 1.5;

πjC = 0.1 or 0.3; and τ2 = 0.1 and 1. If a ‘study’ had YT +YC = 0 or n, we followed

customary practice by discarding it and reducing K accordingly. We estimated τ2

by three methods: DerSimonian-Laird28, Mandel-Paule29, and restricted maximum
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likelihood (REML). From 1000 replications we studied estimation of τ2 and θ and

the coverage of confidence intervals for θ based on the normal approximation.

Figures 1 and 2 show the results for estimation of τ2 (i.e., var(θj)) when τ2 = 1.

Similar results for τ2 = 0.1 appear in Figures 10 and 11 in the Supplementary

material (Appendix B.1). The substantial biases (usually negative) in estimation of

τ2 for both options have two sources. For the larger values of θ they arise from the

restriction πjT < 1, which has greater impact for πjC = 0.3 than for πjC = 0.1. As

the traces for the theoretical value of τ2 show, this source of bias plays a steadily

decreasing role as θ decreases from 1.5 to −1.5. For the smaller (i.e., more-negative)

values of θ, the source of the bias is progressively small values of πjT , as θ becomes

more negative. For example, when πjC = 0.1, and θ = −0.5, the median value

of πjT is 0.0607, for θ = −1, the median value is 0.0368, and for θ = −1.5 it is

0.0223. For sparse data, the distribution of log(risk) and hence log(RR) is not well

approximated by a normal distribution. It is well known that the standard REM

does not perform well in these circumstances30.

In relation to θ the point-mass option (Figure 1) has similar patterns of bias

in τ̂2 for the three methods as K increases and as n increases. The MP method

consistently has the smallest bias, followed by REML and then DL. As K increases,

the patterns for each n change little. As n increases, the traces for each K move

closer to 1, and the trace for REML moves closer to that for MP. In contrast, the

traces for DL generally move farther away from the other estimators.

For the truncation option the plots of bias in τ̂2 versus θ (Figure 2) are qual-

itatively similar to those for the point-mass option (Figure 1), with several main

differences. For πjC = 0.1 and each combination of n and K, the biases are larger

than those in Figure 1, especially for θ ≥ 0. For πjC = 0.3 and θ > 0 the slopes are

not as steep, and the biases at θ = 1.5 are not as large, as in Figure 1.

Biases in estimating θ are almost the same for the three methods of estimating

τ2. Therefore Figure 3 shows the results for the Mandel-Paule method and, for

comparison, the theoretical expectations. For both options and both values of πjC
the bias in θ̂ is strongly related to θ. When πjC = 0.1, the two options produce the

same bias for θ ≤ 0: positive at θ = 0 and roughly linear in θ, with negative slope,

for θ < 0. (We expect the restriction πjT < 1 to have little impact.) For θ > 0 the

traces for the two options diverge; the point-mass option has bias of relatively small

magnitude, and the truncation option has increasingly negative bias as θ increases.

When πjC = 0.3, both traces show substantial curvature. For θ ≤ −0.5, truncation

often produces smaller (and positive) bias than the point-mass option, but for θ ≥ 0

its bias is negative and considerably larger in magnitude. These patterns change

little with K and only slightly with n.

In summary, neither the point-mass option nor the truncation option responds

satisfactorily to bj sampled from a random-effects distribution that produces πjT >

1. The resulting biases in estimating θ and τ2 are often unacceptably large. Our

choice of τ2 = 1 as the true value may have magnified the biases, but it serves to

illustrate the difficulties, and the same general patterns in estimating τ2 are

present when τ2 = 0.1. The biases seen in this small simulation raise questions

10



about the results of numerous meta-analyses that have employed the REM for risk-

ratios. We explore this further in Section 6.

4 Beta-binomial model

In this section we explore the main alternative to the binomial GLMMs, beta-

binomial regression, and its application to meta-analysis of risk ratios.

4.1 The beta-binomial distribution

The beta-binomial (BB) distribution arises as a mixture of binomial distributions,

Binom(n, p), according to a beta distribution for p. If Y ∼ Binom(n, p) and

p ∼ Beta(α, β), then, unconditionally, Y follows a beta-binomial distribution with

parameters n, α, and β (Johnson et al.31, p.270). It is convenient to parametrize

this distribution as BetaBinom(n, π, ρ), where π = α/(α + β), ρ = 1/(α + β + 1),

α > 0, and β > 0. Then the beta distribution has mean π and variance π(1 − π)ρ,

and

E(Y ) = nπ, Var(Y ) = nπ(1− π)(1 + (n− 1)ρ) , (13)

which shows overdispersion relative to Binom(n, π). The distribution of the sum of

n Bernoulli(π) random variables with intra-cluster correlation (ICC) ρ has the same

mean and variance, but its actual shape may be very different32.

4.2 Beta-binomial regression

Like the conventional REM and the binomial GLMMs, beta-binomial regression is a

two-stage random-effects model. Assume that, as in a randomized controlled trial,

the treatment and control groups of each study are independent, and that within the

two groups, conditional on the probabilities, the numbers of events follow binomial

distributions. Allowing beta-distributed variation of the probabilities among the

studies, the resulting marginal distributions are BB distributions. If (for simplicity)

they have the same ρ for both groups and all studies, then

YjC ∼ BetaBinom(njC , πC , ρ) and YjT ∼ BetaBinom(njT , πT , ρ). (14)

That is, as in the binomial model, the two groups differ only on π (and n). The

corresponding beta distributions are

pji ∼ Beta(πi(ρ
−1 − 1), (1− πi)(ρ−1 − 1)). (15)

Importantly, because the GLMMs and BB regression make very different distribu-

tional assumptions about the random effects, their results may differ. Bakbergenuly

and Kulinskaya33 considered meta-analysis of odds ratios under a beta-binomial

model. A more general model uses a bivariate beta distribution, and therefore

may have different values of ρ in the two groups, and also correlation between the

groups34.
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Like GLMMs, the beta-binomial model can incorporate a matrix of covariates

X by using an appropriate link function g for the effect measure of interest, so that

g(π) = Xθ for a vector of unknown parameters θ.

For beta-binomial meta-analysis,

g(πi) = α+ xiθ;

as before, xi is a treatment indicator, and θ is a treatment effect. Thus, beta-

binomial regression yields a random-effects model in which θ determines the associ-

ation between pjT and pjC (through the link function).

Most, if not all, beta-binomial regression programs use the logit link35;36, so the

probabilities π = expit(Xθ). The logit link function guarantees that the probabilities

π lie in the interval (0, 1). The log link encounters the same complications as in

the log-binomial model, because the estimation process needs to incorporate the

constraint Xθ < 0 . We are not aware of any theoretical work for this log-beta-

binomial model.

4.3 Using standard beta-binomial regression for risk ratio

In a single study the risk ratio can be estimated as the ratio π̂T /π̂C of the maximum-

likelihood estimators of πT and πC or from the estimated logits obtained by using a

beta-binomial regression with the logit link.

The likelihood for the beta-binomial model (14) is

K∏
j=1

2∏
i=1

(
nji
Yji

)
Beta(πi(ρ

−1 − 1) + Yji, (1− πi)(ρ−1 − 1) + nji − Yji)
Beta(πi(ρ−1 − 1), (1− πi)(ρ−1 − 1))

, (16)

where Beta(u, v) is the beta function. The parameters πT , πC , and ρ can be esti-

mated by maximizing the log-likelihood. This process may encounter computational

problems because the beta-binomial distribution does not belong to an exponential

family37. Maximum-likelihood estimation requires numerical methods such as the

Newton-Raphson method. The approximate covariance matrix of the parameter

estimates is obtained by evaluating the inverse of the Hessian matrix at those esti-

mates.

In R, the package bbmle provides a program for maximizing the beta-binomial

likelihood38. General beta-binomial regression with the logit link function is imple-

mented in a number of R packages, including gamlss39 and hglm36. The use of the

SAS procedure NLMIXED is explained in Martinez et al.37.

From the MLEs of πT and πC and estimates of their variances Var(π̂T ) and

Var(π̂C) (say, from bbmle), the delta method yields an approximation for the variance

of log(RR):

Var(log(RR)) ≈
[

1

π̂T

]2
Var(π̂T ) +

[
1

π̂C

]2
Var(π̂C). (17)
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Similarly, when using the logit link, output from beta-binomial regression (say,

gamlss) provides estimates of the log-odds η̂C = α̂ and η̂T = α̂ + θ̂ and their stan-

dard errors. To obtain the estimate of the RR, the expit transformation yields the

estimated probabilities

π̂C =
exp(α̂)

1 + exp(α̂)
and π̂T =

exp(α̂+ θ̂)

1 + exp(α̂+ θ̂)
.

Then log(RR) is given by log(π̂T /π̂C) with variance approximated by the delta

method:

Var(log(RR)) ≈ Var
(

log
(

exp(η̂T )
1+exp(η̂T )

)
− log

(
exp(η̂C)

1+exp(η̂C)

))
=
[

1
1+exp(η̂T )

]2
Var(η̂T ) +

[
1

1+exp(η̂C)

]2
Var(η̂C).

(18)

The overdispersion in the BB model may be parametrized in various ways: bbmle

estimates γ = (1 − ρ)/ρ, and gamlss estimates γ = log(ρ). In Appendix A we

provide R functions for using bbmle and gamlss for meta-analysis of RR.

4.4 Conventional meta-analysis of risk ratios under the beta-binomial

model

Conventional meta-analysis calculates the sample risk ratios, ψ̂j = π̂jT /π̂jC , and

their logarithms, θ̂j , and uses inverse-variance weights based on estimated variances

of the θ̂j . To obtain an unbiased (to O(n−2)) estimate of θj and an unbiased (to

O(n−3)) estimate of Var(θ̂j) under a binomial distribution, Pettigrew et al.14 add

1/2 to the number of events and the total in each group:

θ̂j = log

(
YjT + 1/2

njT + 1/2

)
− log

(
YjC + 1/2

njC + 1/2

)
; (19)

we retain this estimate. When YjC and YjT have BB distributions, Equation (14),

the approximate variance of θ̂j , obtained via the delta method, is

Var(θ̂j) ≈
1− πT
njTπT

(1 + (njT − 1)ρ) +
1− πC
njCπC

(1 + (njC − 1)ρ). (20)

Substituting the variances of the π̂i from the line above (13) yields the same variance

as in Equation (17). Setting ρ = 0 in (20) yields the within-study variance of θ̂j
for binomially distributed data, so under the BB model (ρ > 0) this variance is

inflated. In a direct parallel, in the conventional REM, compared with the fixed-

effect model, the variances of the θ̂j are inflated by an additive variance component,

τ2. Thus, the BB model is similar to the conventional REM, but the variance-

inflation is multiplicative instead of additive; it is of order O(1) and increases with

ρ; the variance also may be large when πC or πT is close to 0.

The conventional REM uses inverse-variance weights to obtain an estimate of

the overall effect. Estimating πjT and πjC as in (19) yields the estimated variance

V̂ar(θ̂j) =
(

1
yjT+1/2 −

1
njT+1/2

)
(1 + (njT − 1)ρ̂)+(

1
yjC+1/2 −

1
njC+1/2

)
(1 + (njC − 1)ρ̂).

(21)

To use these estimated variances, however, we must estimate ρ.
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4.5 Estimation of ρ

To estimate ρ, we modify two established methods: a method-of-moments estimator

based on Cochran’s Q statistic, similar to the DerSimonian-Laird28 estimator of τ2,

and a restricted-maximum-likelihood estimator. According to Viechtbauer40, these

two approaches perform best for estimation of the between-studies variance τ2 in

the additive REM. We also use a version of the method of Mandel and Paule29 to

estimate ρ from the large-sample approximation of Q by a chi-squared distribution.

All three methods were proposed by Kulinskaya and Olkin41, but they have not pre-

viously been explored by simulation. We refer to these estimators as ρ̂MoM , ρ̂REML

and ρ̂MP , respectively. However, in finite samples the chi-squared distribution is

a poor approximation to the distribution of the Q statistic42, and we propose a

new method for point and interval estimation of ρ based on inverting the modified

Breslow-Day (BD) test43, ρ̂BD. Bakbergenuly and Kulinskaya33 proposed a simi-

lar method in meta-analysis of odds ratios. The detailed derivations for these four

estimators of ρ are given in Appendix A1.

4.6 Simulation study

To explore the performance of beta-binomial methods for meta-analysis of risk ratios,

we conducted a small simulation study. We used equal sample sizes njC = njT =

n/2, the same value of θ for all studies, and πT = πC exp(θ) for θ < −log(πC).

The data in the Treatment and Control groups were generated from independent

beta-binomial distributions. Parallel to Section 3.3.2, we set K = 5, 10, 20; n =

100, 200, 500; θ = −1.5, −1.0, −0.5, 0, 0.5, 1, 1.5; πC = 0.1 or 0.3; and ρ = 0.1.

As in our simulation study for the log-binomial LMM (Section 3.3.2), when a ‘study’

had YT + YC = 0 or n, we discarded it and reduced K accordingly.

We estimated ρ by the modified MoM and MP methods, REML, and the BD-

based method. The estimates of θ used inverse-variance weights, and their CIs used

the normal approximation. We also included bbmle and gamlss, the latter with logit

link. For all methods, we estimated bias in estimation of θ and ρ, and coverage of

confidence intervals for θ. For the nine combinations of n and K, Figures 4, 5, and

6 plot (versus θ) the estimated bias for ρ̂ and θ̂, and the coverage of θ, respectively.

Because the results are almost the same for the MP, MoM, and REML methods,

the figures show only the MP results.

For bbmle and gamlss, the bias in ρ̂ does not vary appreciably with θ, πC , or

n. It is roughly −0.02 for K = 5, and it approaches 0 as K increases. The bias of

the other methods is generally negative, unrelated to n, and only weakly related to

K. The relation of those biases to θ is roughly linear, with similar positive slopes

(except for high positive values with BD when πC = 0.3). When πC = 0.1, the bias

of MP rises from −0.0855 at θ = −1.5 to −0.0386 at θ = +1.5; it is closer to 0 by

roughly 0.05 when πC = 0.3. The trace for BD when πC = 0.1 closely resembles

that for MP when πC = 0.3, and it shifts upward by roughly 0.035 when πC = 0.3.

Since the true value of ρ is 0.1, these biases are substantial.

The bias in θ̂ follows two patterns, both of which change little with N or πC .
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One pattern (RR estimated with bbmle or gamlss) goes linearly from small negative

bias at θ = −1.5 to small positive bias at θ = 1.5, and its magnitude decreases

as K increases. The other pattern (MP, BD and other inverse-variance methods)

goes, roughly linearly, from around 0.3 at θ = −1.5 to around −0.3 at θ = 1.5,

when K = 5; and the traces become steeper as K increases. All of the methods

have essentially no bias at θ = 0, but otherwise MP and BD underestimate the

magnitude of θ by about 20%. This is due to the effect of transformation bias,

which is almost linear in ρ. Section 6.2.3 in Bakbergenuly and Kulinskaya33 gives a

detailed explanation of the similar bias in BB meta-analysis of log-odds-ratio.

The confidence intervals for bbmle have the best coverage of θ, slightly below the

nominal 95% when K = 5 (particularly when θ = −1.5) but differing little from

95% when K = 10 and K = 20. Coverage of the gamlss intervals is lower, especially

when πC = 0.3, and it declines steadily as θ increases from −1.5 to +1.5; the

pattern changes little with n or K. The inverse-variance-based methods give close

to nominal coverage when θ = 0, but they deteriorate rapidly as θ departs from 0 in

either direction, and that pattern becomes worse as K increases (for example, when

K = 20, coverage of the MP interval is near or below 50% at θ = −1.5 and θ = 1.5,

for all three values of n). Patterns of bias such as those in Figure 5 would lead us

to expect the patterns of coverage in Figure 6.

Overall, the inverse-variance methods do not help with estimation of RR in

the beta-binomial model, as it requires the same constraints as the log-binomial

model. Beta-binomial regression performs much better in estimation of ρ and RR,

especially for K ≥ 10. However, the use of the logit link, as in gamlss, does not

provide sufficient coverage of RR, and only bbmle provides a viable option when the

data follow a BB model. We discuss model misspecification issues in Sections 6 and

7.

5 Examples

In this section, we re-analyze the data from two medical meta-analyses, comparing

two conventional random-effects methods (DL and REML) with the six methods

developed for the beta-binomial model that we discussed in Section 4. The first meta-

analysis, on the effect of diuretics on pre-eclampsia44 considered the beneficial effects

of treatment (i.e., the RR of benefit), whereas the second meta-analysis focused on

side-effects of low-dosage tricyclic antidepressants in acute depression45 (i.e., the RR

of harm).

5.1 Example 1: Effect of diuretics on pre-eclampsia

A meta-analysis of nine trials, with a total of 6942 patients, evaluated the effect

of diuretics on pre-eclampsia, a serious complication in pregnancy44. These data

(Table 1) have also been analyzed (as odds ratios) by Thompson and Pocock46,

Hardy and Thompson47, Biggerstaff and Tweedie48, Whitehead49, Viechtbauer50,

Makambi and Lu51, and Kulinskaya and Olkin41. The incidence of pre-eclampsia
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Table 1: Data from nine trials of diuretics for treatment of pre-eclampsia in preg-

nancy. The study-level estimate of log(RR), θ̂j , comes from Equation (19).

Study YjC njC YjC/njC YjT njT θ̂j

1 14 136 0.103 14 131 0.0373

2 17 134 0.127 21 385 −0.8471

3 24 48 0.500 14 57 −0.6947

4 18 40 0.450 6 38 −0.9953

5 35 760 0.046 12 1011 −1.3290

6 175 1336 0.131 138 1370 −0.2619

7 20 524 0.038 15 506 −0.2447

8 2 103 0.019 6 108 0.9083

9 40 102 0.392 65 153 0.0969

in the control group shows considerable heterogeneity: from 1.9% in Study 8 to

50.0% in Study 3. The incidence in over half of the studies is large enough that

the odds ratio does not provide a satisfactory approximation for the risk ratio. The

study-level estimates of log(RR) (θ̂j from (19)) range from −1.33 to +0.91.

For various methods Table 2 shows the estimated values of τ2 for the conventional

REM, and of ρ in the BB model. In the conventional REM the DerSimonian-Laird

estimate of τ2 is τ̂2DL = 0.156, and τ̂2REML = 0.199. Viechtbauer50 gives Q-profile

confidence intervals for DL, and Hardy and Thompson47 give profile-likelihood con-

fidence intervals for the REML method.

For the beta-binomial model, six methods provide estimates of ρ: 0.138 for bbmle

and 0.139 for gamlss, and 0.008 to 0.019 for the method-of-moments, REML, MP,

and BD estimators. The separation between results from BB regression methods

(bbmle/gamlss) and the inverse-variance BB methods is in the direction that we

would expect from the simulation results on bias in Figure 4, but the magnitude of

ρ̂ from BB regression methods is greater (perhaps because of the particular mixture

of values of the incidence of pre-eclampsia in the control group).

In bbmle, the maximum-likelihood-based estimates of the means of the two beta-

binomial distributions are π̂T = 0.143 and π̂C = 0.185, which result in RR =

0.774. The confidence intervals for estimates of probabilities and the overdispersion

parameter γ (= (1 − ρ)/ρ = α + β) are based on the standard errors obtained

from the inverse of the observed information matrix. The standard error for the

log-risk-ratio is obtained by the delta method as a function of πT and πC , Equation

(17).

In gamlss the estimates for probabilities are obtained from the beta-binomial

regression model with logit link function. The estimates for probabilities obtained

by inverting the logit link function, π̂T = 0.143 and π̂C = 0.185, yield RR = 0.773.

In gamlss the intra-cluster correlation is defined as ρ = σ/(σ+1), where σ = 1/(α+β)

is the overdispersion parameter. The parameter σ has a log link function. Standard
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Table 2: Point estimates and confidence intervals for τ2, ρ, log-risk-ratio (LRR), and

risk ratio (RR) in the example of diuretics in pre-eclampsia; FEM is the fixed-effect

model, REM is the random-effects model, and BB is the beta-binomial model. bbmle

and gamlss are beta-binomial maximum-likelihood-based and generalized-additive-

regression models. The heterogeneity parameter is τ2 in REM and ρ in the BB

model. L and U denote the lower and upper limits of the 95% confidence intervals

(CIs).

Model Method Overdispersion L U LRR L U Length RR L U

parameter of CI

τ2

FEM −0.305 −0.449 −0.161 0.288 0.737 0.638 0.851

REM DL&IV 0.156 0.049 1.582 −0.437 −0.768 −0.107 0.661 0.646 0.464 0.899

REM REML&IV 0.199 0.032 0.989 −0.439 −0.799 −0.079 0.720 0.645 0.450 0.924

ρ

BB MoM&IV 0.008 0.002 0.093 −0.297 −0.563 −0.032 0.530 0.743 0.570 0.969

BB REML&IV 0.010 0.001 0.061 −0.305 −0.595 −0.014 0.581 0.737 0.551 0.986

BB MP&IV 0.016 0.002 0.093 −0.316 −0.644 0.012 0.632 0.729 0.525 1.011

BB BD&IV 0.019 0.003 0.106 −0.321 −0.668 0.025 0.693 0.725 0.513 1.026

BB bbmle 0.138 0.077 0.258 −0.257 −1.008 0.495 1.504 0.774 0.365 1.640

BB gamlss 0.139 0.057 0.300 −0.257 −0.948 0.433 1.381 0.773 0.388 1.542

errors and confidence intervals for σ are obtained in the log scale. The relation

between ρ and σ yields a confidence interval for ρ.

The estimate of the overall risk ratio is highest (0.774) in the bbmle model, and

its confidence interval is the longest (1.275). The estimate of the risk ratio is lowest

(0.645) in the conventional REM with τ̂2REML = 0.199.

The results of this example can be compared with simulation results for K = 10

(in Figure 5), since it has nine studies. Thus, for θ̂bbmle = −0.257, the bias of bbmle

and gamlss is about 0.20, which leads to the estimate θ̂True = −0.257 − 0.20 =

−0.457. For θ̂BD = −0.321, the bias of the Breslow-Day method for estimating ρ is

0.10, which leads to the estimate θ̂True = −0.321− 0.10 = −0.421.

5.2 Example 2: Side-effects of low-dosage tricyclic antidepressants

in acute-phase depression

Systematic review CD00319745 in the Cochrane Library compared the effects and

side effects of low-dosage tricyclic antidepressants (TCA) with placebo and with

standard-dosage tricyclics in acute-phase treatment of depression. Comparison 2

Outcome 6 is the meta-analysis of the rate of side effects in the low-dosage TCA

group vs placebo. Table 3 gives the data on numbers of patients experiencing at

least one side effect.

The incidence of side effects in the placebo group is substantial; only 2 of the 16

studies have YjC/njC < 10%, and the highest is 75%. Again, the odds ratio does

not provide a satisfactory approximation for the risk ratio. One would expect more

patients in the treatment group to report side effects (RR > 1, θ > 0). The values of
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Table 3: Data on numbers of patients experiencing at least one side effect in studies

of low-dosage tricyclic antidepressants vs. placebo. The study-level estimate of

log(RR), θ̂j , comes from Equation (19).

Study YjC njC YjC/njC YjT njT YjT /njT θ̂j

1 17 28 0.607 16 24 0.667 0.092

2 7 10 0.700 12 12 1.000 0.336

3 3 12 0.250 8 13 0.615 0.810

4 30 62 0.484 29 60 0.483 −0.001

5 14 53 0.264 34 60 0.567 0.744

6 5 21 0.238 14 20 0.700 1.017

7 13 46 0.283 37 45 0.822 1.043

8 45 60 0.750 56 60 0.933 0.217

9 31 82 0.378 52 95 0.547 0.364

10 0 10 0.000 3 16 0.188 1.494

11 9 47 0.191 51 110 0.464 0.846

12 5 20 0.250 8 20 0.400 0.435

13 3 16 0.188 7 15 0.467 0.825

14 43 72 0.597 63 72 0.875 0.378

15 1 29 0.034 8 28 0.286 1.769

16 5 23 0.217 5 17 0.294 0.295

θ̂j show substantial heterogeneity, and they suggest a mixture of four groups: eight

values from −0.001 to 0.435, six values from 0.744 to 1.043, one at 1.494, and one

at 1.769.

Table 4 shows the estimated values of τ2 in the conventional REM and of ρ in the

BB model. The DerSimonian-Laird estimate is τ̂2DL = 0.047, and τ̂2REML = 0.068.

For the beta-binomial model, the six estimates of ρ again separate into two clumps:

the method-of-moments, REML, MP, and BD estimates range from 0.006 to 0.031,

and bbmle and gamlss both produce 0.175. From the simulation results in Figure 4

(especiallly those for n = 100 and K = 20), we might expect such a separation, but

the values of the other parameters in the simulations are not close to the estimated

values in this example.

Both bbmle and gamlss yield π̂T = 0.593, π̂C = 0.347, and hence RR = 1.708.

This is likely to be a reasonable estimate of RR. From the simulation results in

Figure 5, we would expect the other BB estimates to have negative bias. The

estimates from the REM are also likely to be low. Of bbmle and gamlss, the latter

has a substantially wider confidence interval.

6 Risk ratio in Cochrane reviews

To explore the practical implications of the restricted range in meta-analyses of risk

ratio, we reviewed random-effects meta-analyses that used RR in Cochrane Library

Issue 4, 2004. As in the Cochrane Collaboration’s Review Manager52, we used
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Table 4: Point estimates and confidence intervals for τ2, ρ, log-risk-ratio (LRR),

and risk ratio (RR) in the example of side effects of low-dosage tricyclic antide-

pressants vs. placebo; FEM is the fixed-effect model, REM is the random-effects

model, and BB is the beta-binomial model. bbmle and gamlss are beta-binomial

maximum-likelihood-based and generalized-additive-regression models. The hetero-

geneity parameter is τ2 in REM and ρ in the BB model. L and U denote the lower

and upper limits of the 95% confidence intervals (CIs).

Model Method Overdispersion L U LRR L U Length RR L U

parameter of CI

τ2

FEM 0.355 0.258 0.452 0.194 1.426 1.294 1.571

REM DL&IV 0.047 0.005 0.329 0.461 0.286 0.636 0.350 1.586 1.331 1.889

REM REML&IV 0.068 0.005 0.275 0.480 0.286 0.674 0.388 1.616 1.331 1.961

ρ

BB MoM&IV 0.028 0.002 0.107 0.368 0.217 0.520 0.303 1.445 1.242 1.682

BB REML&IV 0.031 0.004 0.109 0.369 0.214 0.525 0.311 1.447 1.238 1.690

BB MP&IV 0.026 0.002 0.107 0.368 0.219 0.517 0.298 1.445 1.245 1.676

BB BD&IV 0.006 −0.008 0.073 0.359 0.246 0.473 0.227 1.432 1.279 1.604

BB bbmle 0.175 0.107 0.276 0.535 0.384 0.686 0.302 1.708 1.469 1.987

BB gamlss 0.175 0.102 0.284 0.535 0.326 0.745 0.419 1.708 1.384 2.107

inverse-variance-weighted meta-analysis and estimated the between-study variance

τ2 by the DerSimonian-Laird method. We also included the BB-based analysis using

bbmle.

We considered only the 2115 meta-analyses with K ≥ 3 studies. Among those,

1286 MAs had τ̂2 > 0 (by our calculations, using metabin from the R package meta).

Those 1286 MAs included 8940 studies with nC ≥ 5 and nT ≥ 5.

For Study j in MA m we calculated the estimated log(RR), θ̂mj , from (19)

and its within-study variance vmj from (21) with ρ = 0. (These calculations aim

to minimize bias in θ̂mj and vmj . They add 1/2 to each cell of the 2 × 2 table

for each study, whereas the conventional ones add 1/2 only when the 2 × 2 table

contains a zero cell.) The FE weights are wFmj = 1/vmj , and the RE weights are

wRmj = (vmj + τ̂2m)−1. For the FEM and the REM, we set wmj equal to wFmj and

wRmj , respectively, to obtain the combined effects θ̂m and their estimated variances

1/
∑

j wmj .

For the FEM and the REM we calculated studentized residuals rmj = (θ̂mj −
θ̂m)/smj , now defining s2mj = Var(θ̂mj− θ̂m) = 1/wmj−1/

∑
j wmj for the respective

weights. If, in the model for the log-risk-ratio, the assumption bmj ∼ N(0, τ2m)

holds for these Cochrane reviews, these rmj should have approximately the standard

normal distribution. Because no single meta-analysis involves enough studies to

assess the reasonableness of that assumption, we combined the rmj from all studies

in MAs with θ̂ ≥ 0 and τ̂2 > 0. The Q-Q plot in Figure 7 shows that the distribution

of the rmj is not well approximated by a normal distribution. Although less striking,

the corresponding plot of the rmj from the studies in MAs with θ̂ < 0 and τ̂2 > 0 (not
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Table 5: Studies in 1286 meta-analyses in the Cochrane Database that used REM

for RR and had τ̂2 > 0, cross-classified by the estimated probability of truncation

for πT and whether θ̂ ≥ 0

Estimated probability of truncation of πT

< 0.05 [0.05− 0.15) [0.15− 0.25) [0.25− 0.35) [0.35− 0.45)

θ̂ ≥ 0 1725 192 68 59 50

θ̂ < 0 6249 362 88 56 18

Total 7974 554 156 115 68

Estimated probability of truncation of πT

[0.45− 0.55) [0.55− 0.65) [0.65− 0.75) [0.75− 0.85) ≥ 0.85

θ̂ ≥ 0 16 22 16 14 5

θ̂ < 0 0 0 0 0 0

Total 16 22 16 14 5

shown) reinforces that message. The example in Section 5.2 suggests an additional

departure: the studies’ effects may come from a mixture of distributions. This could

help to account for the appearance, in Figure 7, of a distribution whose tails are

lighter than normal.

Building on the analysis in Section 3.2, we also inquire into the impact of the

restriction in Equation (8). Because conventional meta-analysis starts with the log

of the sample RR, and the range of the log function is unbounded, it might seem that

the restriction would have no impact. However, the basic data for each study include

yjC and njC , and under the usual binomial model π̂jC = yjC/njC is an unbiased

estimate of πjC . Thus, when π̂jT = yjT /njT > π̂jC and hence θ̂j > 0, larger πjC (and

hence −logπjC closer to 0) will increase the impact of the restriction. We investigate

the impact by estimating the probability of violating Equation (8), which we refer

to as the truncation probability. For a normally distributed random effect bmj this

is approximated by 1 − Φ((−log(π̂mjC) − θ̂m)/τ̂m). We grouped these estimated

probabilities into 10 bins: < 0.05, [0.05− 0.15), [0.15− 0.25), . . . ,≥ 0.85. Table 5

shows the numbers of studies in each bin.

In total, 966 studies had truncation probability ≥ 0.05: 442 studies from 188

MAs with θ̂ ≥ 0 and 524 studies from 241 MAs with θ̂ < 0. These 429 MAs out of

1286 (exactly 1/3 of the MAs using REM for RR) are likely to have reported biased

conclusions. For the MAs with θ̂ ≥ 0 and τ̂2 > 0, Figure 8 shows boxplots of the

rmj in each of the ten intervals of probability of truncation for πjT . The distance

between θ̂mj and θ̂m is strongly related to the truncation probability. When the

truncation probability is ≥ 0.35, the median of the rmj is at or below −1. In these

123 studies the violation of the assumptions of the conventional REM is likely to be

greatest. Separate Q-Q plots of the rmj for the studies with truncation probability

< 0.35 and the studies with truncation probability ≥ 0.35 (not shown) support this

conclusion.

The three panels of Figure 9 plot the estimates of log(RR) from the REM,
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the estimates of log(RR) from bbmle, and the difference between them versus the

estimates from the FEM. For the 353 MAs with θ̂REM ≥ 0 and τ̂2 > 0 in panel

(a), the majority of REM estimates are above their FEM counterparts, sometimes

very substantially. This pattern supports the impression that the positive risk ratios

and their significance reported from the conventional REM are overestimates. We

conclude that the positive values of log(RR) estimated from REM are likely to be

overestimates. Simulations performed previously to ascertain the quality of those

estimates are likely to have provided downward-biased results, compensating for this

overestimation.

The bbmle estimates from the 713 MAs with θ̂bbmle ≥ 0 and ρ̂ > 0 in panel (b)

follow the same pattern, perhaps even more so. There are more positive values of

θ̂ from bbmle than from REM, and they appear to have higher values. Relative to

the estimates from the FEM, the differences between the estimates from the REM

and those from bbmle, in panel (c), are more often negative, and they are often not

small. A difference of 0.223 in log(RR) corresponds to a factor of 1.25 in RR. These

differences may be due to the differences in the underlying assumptions about the

distribution of random effects in the two models, and hence to model misspecification

in one of them, and/or to the biases discussed in Sections 3 and 4.

At the suggestion of a referee, we repeated the analyses of this section, restricting

the participating meta-analyses to only the 128 with K ≥ 10 studies, to guard

against imprecise estimation of τ2 for smallK. The results, in Appendix B.2 (Figures

12-14), are qualitatively similar.
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Figure 1: Relation of estimates of the between-studies variance (τ2) to the overall

log-risk-ratio (θ) in K studies, each of total sample size n, when data come from the

binomial-normal model with point mass for τ2 = 1 and πjC = 0.1 (solid lines) and

0.3 (dashed). The Mandel-Paule (circle), REML (triangle), and DerSimonian-Laird

(plus) estimators are compared with the true variance (cross). Light grey line at 1.
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Figure 2: Relation of estimates of the between-studies variance τ2 to the overall

log-risk-ratio (θ) in K studies, each of total sample size n, when data come from the

binomial-normal model with truncation for τ2 = 1 and πjC = 0.1 (solid lines) and

0.3 (dashed). The Mandel-Paule (circle), REML (triangle), and DerSimonian-Laird

(plus) estimation methods are compared with the true variance (cross). Light grey

line at 1.
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Figure 3: Relation (to the overall log-risk-ratio, θ) of bias in the conventional method

of estimating the log-relative-risk, θ, in the binomial-normal model from K studies,

each of total sample size n, with truncation (circle) or point-mass (triangle) option,

when τ2 (true value, τ2 = 1) is estimated by the Mandel-Paule method, compared

with true bias from truncation (cross) and point mass (diamond). πjC = 0.1 (solid

lines) and 0.3 (dashed). Light grey line at 0.
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Figure 4: Relation (to the overall log-risk-ratio, θ) of bias in estimating ρ from K

studies, each of total size n, in the beta-binomial model for ρ = 0.1 and πC = 0.1

(solid lines) and 0.3 (dashed). The methods are Mandel-Paule (circle), Breslow-Day

(cross), bbmle (reverse triangle), and gamlss (filled square). Light grey line at 0.
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Figure 5: Bias in estimating the overall log-risk-ratio, θ, from K studies, each of

total size n, in the beta-binomial model for ρ = 0.1 and πC = 0.1 (solid lines) and 0.3

(dashed). The log-relative-risk is estimated by using inverse-variance weights. The

methods for estimation of ρ are Mandel-Paule (circle), Breslow-Day (cross), bbmle

(reverse triangle), and gamlss (filled square). Light grey line at 0.
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Figure 6: Coverage of the overall log-risk-ratio, θ, from K studies, each of total

size n, in the beta-binomial model for ρ = 0.1 and πC = 0.1 (solid lines) and 0.3

(dashed). The log-relative-risk is estimated by using inverse-variance weights. The

methods for estimation of ρ are Mandel-Paule (circle), Breslow-Day (cross), bbmle

(reverse triangle), and gamlss (filled square). Light grey line at 0.95.
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Figure 7: Normal Q-Q plot of the studentized residuals for the studies from REM

meta-analyses of log-risk-ratio with θ̂ ≥ 0, τ̂2 > 0 in Cochrane Library Issue 4.
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Figure 8: Boxplots of studentized residuals by truncation probability, for the studies

from REM meta-analyses of log-risk-ratio with θ̂ ≥ 0, τ̂2 > 0 in Cochrane Library

Issue 4.
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Figure 9: Scatterplot (vs. log-risk-ratio from FEM) of the meta-analytic estimates

of log-risk-ratio obtained by: (a) REM, for the 353 REM meta-analyses of RR with

θ̂REM ≥ 0, τ̂2 > 0; (b) bbmle, for the 713 meta-analyses of RR with θ̂bbmle ≥ 0, ρ̂ > 0;

(c) Difference between log(RR) from REM and bbmle for the 353 meta-analyses with

ρ̂ > 0 and θ̂bbmle ≥ 0 and τ2 > 0 and θ̂REM ≥ 0.
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7 Discussion

With models for log-odds-ratio as background, we have focused on models for meta-

analysis of log-risk-ratio, for two main reasons. First, when the event probabilities

are not small, the risk ratio is often more appropriate than the odds ratio. Second,

in generating binomial data for study-level 2×2 tables under a random-effects model

for log-risk-ratio, one must impose a restriction to ensure that πjT < 1 (in addition to

having 0 < πjC < 1). Thus, in the conventional random-effects model, we explored

the consequences of the restrictions on the parameter space. A small simulation

study showed that they lead to bias in estimates of τ2 and in the estimate of the

overall log-risk-ratio.

The alternative of obtaining the data in the 2 × 2 tables from beta-binomial

distributions, and using the log link function, has the same complications as in

the log-binomial model. In order to use the conventional meta-analysis models for

log(RR), one can estimate the πjT and πjC in each study by maximum likelihood

or from the estimated logits in a beta-binomial regression with logit link. The

variances of the resulting estimates of log(RR) involve ρ (intra-cluster correlation).

We considered several ways of estimating ρ, but another small simulation study

showed bias in estimates of ρ that was often unacceptable, though bbmle provided

reasonable point and interval estimates of the overall log(RR) when the data were

generated from BB distributions.

Thus, neither the log-binomial model nor the beta-binomial model is satisfactory

for meta-analysis of (log of) risk ratio. Because the range of the log function is

unbounded, it might seem that conventional meta-analysis of log(RR) would avoid

the complications associated with restrictions on the parameter space, but it does

not. Many meta-analyses use (log of) risk ratio as the effect measure (e.g., in the

Cochrane reviews summarized in Section 6), however, so reliable methods are needed.

Importantly, the standard log-binomial-normal model and the beta-binomial

model are based on different assumptions about the unobservable mixing distri-

butions. The results from these and similar two-stage models are not always robust

against violations of distributional assumptions. For instance, misspecification of

the random-effects distribution in GLMMs can induce bias in the estimates of the

linear predictor parameters and severe bias in estimates of the variance components.

Alonso et al.53 give a comprehensive discussion. For meta-analysis of odds ratios

using BB and REM, these misspecification biases are demonstrated in Bakbergenuly

and Kulinskaya33 (Supplementary Material D). Unfortunately, it is very difficult to

determine the true data-generating mechanism for the random effects, especially

when dealing with sparse data; Drikvandi et al.54 discuss some developments.

For the log-risk-ratio, the complications in the log-binomial model, Equation (6),

arise from the restriction on θ introduced by the relation between θ and the nuisance

parameters, αj = log(πjC). More technically, the joint range of θ and log(πC) is a

proper subset of the set {(log(πC), θ) : log(πC) ≤ 0,−∞ < θ < +∞}. By contrast,

for the odds ratio, −∞ < logit(πC) < +∞, −∞ < log(OR) < +∞, and the joint

range of log(OR) and logit(πC) is the entire real plane. To circumvent this difficulty
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with the log-risk-ratio, Richardson et al.55 propose a new nuisance parameter, the

log of the odds-product (OP). The log-OP ranges from −∞ to +∞, and this choice

of nuisance parameter has the advantage that both log(RR) and the transformed risk

difference, arctanh(RD) = log((1+RD)/(1−RD)), can be modeled independently of

log(OP). The introduction of the log of the odds-product as the nuisance parameter

in models of log(RR) opens up a promising approach that should be the focus of

substantial further research. However, it is plausible that this approach will suffer

from transformation bias and other biases, which are the bane of the existing models

for RR. In the interim, the use of odds ratio instead of relative risk appears to be a

safer option.

For the two examples in Section 5, the choice of method seems to matter. Al-

though the confidence intervals overlap, the estimates of the overall log(RR) sep-

arate into three groupings: conventional REM with inverse-variance weights, BB

with inverse-variance weights, and BB maximum likelihood. In interpreting the es-

timates, however, some caution is appropriate. The study-level estimates of log(RR)

in both examples suggest a mixture. Thus, a single distribution (as in the random-

effects models) may not be an adequate description of the heterogeneity. Lin et

al.56 argue that, if heterogeneity is present, it should permeate the entire collection

of studies, instead of being limited to a small number of outlying studies. We add

that presence of distinct groupings also represents a departure from regular het-

erogeneity. In such situations it may be appropriate to model a cluster structure

by a finite-mixture distribution57 or a product-partition model58 or to consider a

fixed-effects analysis59.

For a sizable number of meta-analyses of risk ratio in Cochrane reviews, we de-

rived studentized residuals from the difference between the study-level estimate and

the overall estimate of the log-risk-ratio. When combined across meta-analyses, the

studentized residuals had a distribution that departed from a normal distribution,

by having lighter tails. And when categorized into intervals of the estimated trun-

cation probability, the studentized residuals showed a strong association between

larger truncation probability and more-negative difference between the study-level

estimate and the overall estimate. Because the vast majority of studentized residuals

in meta-analyses with θ̂ ≥ 0 belonged to the bins where the truncation probability

was < 0.35, we suspect upward bias in the overall estimates.

Other effect measures have restrictions on their parameter spaces. We would

expect similar results for risk difference, response ratio, and arcsin(
√
p) for bino-

mial proportions. The development of appropriate methodology for this important

problem is an urgent task.
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A Appendix

A.1 Estimation of ρ in the BB model

In this section, we give detailed derivations of the four estimators of ρ introduced in

Section 4.5.

Method-of-moments estimator

Denote by σ2j (ρ) = Var(θ̂j) the variance of log(RR) given in Equation (20). Then

σ2j (ρ) = σ2j (0) + ajρ, where σ2j (0) is the variance under the fixed-effect model and

aj = (π−1T − 1)(1 − n−1jT ) + (π−1C − 1)(1 − n−1jC ). The inverse-variance weights are

wj(ρ) = σ−2j (ρ). Cochran’s statistic is Q =
∑
ŵj(θ̂j − θ̄w)2, where ŵj = σ̂−2j (0)

and θ̄w =
∑
ŵj θ̂j/

∑
ŵj . Under the null hypothesis of no over- or under-dispersion

(ρ = 0), the Q-statistic has approximately a chi-squared distribution with K − 1

degrees of freedom, so E(Q) = K − 1. Using the theoretical weights wj = wj(0)

instead of ŵj , the derivation of the expected value of Q yields

E(Q) =
∑

wjσ
2
j (ρ)−

∑
w2
jσ

2
j (ρ)∑
wj

.

After substitution of σ2j (ρ) = σ2j (0) + ajρ, this becomes

E(Q) = K − 1 +

[∑
wjaj −

∑
w2
jaj∑
wj

]
ρ.

The DerSimonian-Laird-inspired estimator of ρ, denoted by ρ̂MoM , is obtained by

substituting Q for E(Q) and the estimated weights ŵj for the theoretical weights

wj and solving the resulting equation for ρ.

Modified Mandel-Paule estimator

Similarly, the modified Mandel-Paule estimator, ρ̂MP , is obtained by considering

Q(ρ) =
∑
ŵj(ρ)(θ̂j − θ̄w(ρ))2 and solving the equation Q(ρ) = K − 1. The weighted

mean is θ̄w(ρ) =
∑
ŵj(ρ)θ̂j/W (ρ), where W (ρ) =

∑
ŵj(ρ).

Restricted-maximum-likelihood estimator

Following Kulinskaya and Olkin41, the REML equation for ρ is

(W (ρ))−1
∑

ŵj(ρ)
aj

1 + ajρ
+
∑

ŵj(ρ)(θj − θ)2
aj

1 + ajρ
=
∑ aj

1 + ajρ
, (A1)

and an iterative procedure readily yields a solution, denoted by ρ̂REML.
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Inverting the modified Breslow-Day test

The Breslow-Day test for homogeneity of odds ratios is based on the statistic

K∑
j=1

(YjT − YjT (ψ̂))2

Var(YjT |ψ̂)
,

where YjT (ψ̂) and Var(YjT |ψ̂), respectively, denote the expected value and the

asymptotic variance of the number of events in the treatment group of Study j

based on the Mantel-Haenszel60 (MH) estimate of the odds ratio, ψ̂. We apply the

same approach to the risk ratio.

The expected number of events, given RR ψ̂ and the total number of events Yj ,

is

YjT (ψ̂) =
ψ̂njTYj

nj − njT + ψ̂njT
.

The MH estimate for the relative risk is

ψ̂ =

∑
yjTnjC/nj∑
yjCnjT /nj

,

and the asymptotic variance61 of YjT is

Var(YjT |ψ̂) =
[

1
YjT (ψ̂)CjT

+ 1
(Yj−YjT (ψ̂))CjC

+

1
(njT−YjT (ψ̂))CjT

+ 1
(nj−Yj−njT+YjT (ψ̂))CjC

]−1
,

(A2)

where Cji = 1 + (nji − 1)ρ̂ are correction factors; i = C, T ; j = 1, . . . ,K. The

Breslow-Day statistic has a χ2
K−1 distribution, and this modification of it can be

used for testing the homogeneity of RRs. Equating the BD statistic to K − 1 yields

the Mandel-Paule-type estimate for ρ, denoted by ρ̂BD.
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A.2 Function for meta-analysis of relative risk using bbmle

############grp− l e v e l outcome data######################

### | Event |No event |
### Treatment | a i | b i |
### Contro l | c i | d i |
### K i s the number o f s t u d i e s

### ai and c i are number o f even t s in T and C arms

###requ i r ed packages : bbmle and emdbook

##i n i t i a l parameters

my bbmle<−function ( ai , bi , c i , d i ) {
require ( emdbook )

require ( bbmle )

##i n i t i a l parameters

pT0<−sum( ( a i +0.5)/ ( n i +1) )/k

pC0<−sum( ( c i +0.5)/ ( n i +1) )/k

rho0<−0 .01

#########################################

### nega t i v e log− l i k e l i h o o d f unc t i on s f o r

### a pa i r o f beta−b inomia l d i s t r i b u t i o n

mtmp <− function ( probT , sizeT , theta , probC , s i zeC ) {
−sum( dbetabinom ( ai , probT , sizeT , theta , log=TRUE) )

−sum( dbetabinom ( c i , probC , sizeC , theta , log=TRUE) )

}
m0 <− suppressWarnings ( try ( mle2 (mtmp, start=l i s t ( probT=pT0 ,

theta=rho0 ˆ(−1)−1,probC=pC0) ,data=l i s t ( s i zeT=ni , s i zeC=ni ) ) ,

s i l e n t=TRUE) )

i f ( ( ! ( inherits (m0, ” try−e r r o r ” ) ) ) ) {
i f ( ( ! ( i s . na( stdEr (m0) [ [ 1 ] ] ) ) )&( ! ( i s . na( stdEr (m0) [ [ 3 ] ] ) ) ) ) {
probT1<−coef (m0) [ [ 1 ] ]

probC1<−coef (m0) [ [ 3 ] ]

varT1<−( stdEr (m0) [ [ 1 ] ] ) ˆ2

varC1<−( stdEr (m0) [ [ 3 ] ] ) ˆ2

varlogRR<−(1/probT1 ) ˆ2∗varT1+(1/probC1 ) ˆ2∗varC1

RR1<−( probT1 )/ ( probC1 )

log RR<−log (RR1)

logRRL<−log RR−qnorm( . 9 7 5 )∗sqrt ( varlogRR )

logRRU<−log RR+qnorm( . 9 7 5 )∗sqrt ( varlogRR )

rhoEst<−1/ ( coef (m0) [ [ 2 ] ] + 1 )

return ( l i s t ( rhoEst , log RR, logRRL , logRRU) )

}}
}
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A.3 Function for meta-analysis of relative risk using gamlss

##R ver s i on 3 . 5 . 0

############grp− l e v e l outcome data######################

### | Event |No event |
### Treatment | a i | b i |
### Contro l | c i | d i |
### K i s the number o f s t u d i e s

### ai and c i are number o f even t s in T and C arms

###requ i r ed packages : gamlss

my gamlss<−function ( ai , bi , c i , d i ) {
require ( emdbook )

require ( gamlss )

r<−c ( ai , c i )

N<−c ( ni , n i )

y<−cbind ( r ,N−r )

arm<−c ( rep ( ”T” , t imes=k ) , rep ( ”C” , t imes=k ) )

arm<−as . factor (arm)

sink ( tempfile ( ) )

modelGamlss <− suppressWarnings ( try ( gamlss ( y˜arm−1, sigma .

formula=˜1 , family=BB) , s i l e n t=TRUE) )

sink ( )

i f ( ! ( inherits ( modelGamlss , ” try−e r r o r ” ) ) ) {
####f i t t i n g the model us ing gamlss##############

sink ( tempfile ( ) )

r e s<−suppressWarnings (summary( modelGamlss , save=TRUE) )

sink ( )

pC3<−exp( modelGamlss$mu. coef f ic ients [ [ 1 ] ] ) /(1+exp(

modelGamlss$mu. coef f ic ients [ [ 1 ] ] ) )

pT3<−exp( modelGamlss$mu. coef f ic ients [ [ 2 ] ] ) /(1+exp(

modelGamlss$mu. coef f ic ients [ [ 2 ] ] ) )

s t . e r r o r 1<−( r e s $coef . table [ , 2 ] [ [ 1 ] ] )

s t . e r r o r 2<−( r e s $coef . table [ , 2 ] [ [ 2 ] ] )

varC3<−(1/(1+exp( modelGamlss$mu. coef f ic ients [ [ 1 ] ] ) ) ˆ2) ˆ2∗ ( s t

. e r r o r 1 ) ˆ2

varT3<−(1/(1+exp( modelGamlss$mu. coef f ic ients [ [ 2 ] ] ) ) ˆ2) ˆ2∗ ( s t

. e r r o r 2 ) ˆ2

RR3<−pT3/pC3

logRRgamlss<−log (RR3)

varRR3<−varT3+varC3

logRRL gamlss=0

logRRU gamlss=0

i f ( ! i s . null ( s t . e r r o r 2 ) ) {
logRRL gamlss<−logRRgamlss−qnorm( . 9 7 5 )∗sqrt (varRR3)
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logRRU gamlss<−logRRgamlss+qnorm( . 9 7 5 )∗sqrt (varRR3)

}
rhoEst<−exp( modelGamlss$sigma . coef f ic ients [ [ 1 ] ] ) /(1+exp(

modelGamlss$sigma . coef f ic ients [ [ 1 ] ] ) )

}
return ( l i s t ( rhoEst , logRRgamlss , logRRL gamlss , logRRU gamlss ) )

}
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A.4 Function for meta-analysis of relative risk using ρDL

##R ver s i on 3 . 5 . 0

############grp− l e v e l outcome data######################

### | Event |No event |
### Treatment | a i | b i |
### Contro l | c i | d i |
### K i s the number o f s t u d i e s

### ai and c i are number o f even t s in T and C arms

###requ i r ed packages : None

my DL function g e n e r i c<−function ( ai , c i , bi , d i ) {
p1i<−( a i +0.5)/ ( a i+bi +1)

p2i<−( c i +0.5)/ ( c i+di +1)

p s i i<−( a i +0.5)∗ ( ( c i+di ) +0.5)/ ( ( c i +0.5)∗ ( a i+bi +0.5) )

y i <− log ( p s i i )

vi <− 1/ ( a i +0.5)−1/ ( a i+bi +0.5)+1/ ( c i +0.5)−1/ ( c i+di +0.5)

n1 i<−a i+bi

n2 i<−c i+di

n i<−n1i+n2i

Ri<−n1i/n2i

a i<−( Ri∗n i / ( Ri+1) )∗((1+ p s i i−2∗p1i )/ ( Ri∗(1−p1i )+p s i i−p1i )

)−1

wi<−1/vi

W<−sum( wi )

thetabar<−sum( y i∗wi )/W

Q<−sum( wi∗ ( yi−thetabar ) ˆ2)

barn w<−sum( a i ∗wi )/W

barn<−sum( a i )/k

rho M<−max( (Q−k+1)/ ( k∗barn−barn w) ,−1/max( ni−1) )

###est imated we i gh t s

w M<−wi/(1+a i ∗rho M)

thetabar M<−sum( y i∗w M)/sum(w M)

Ltheta M<−thetabar M−qnorm( . 9 7 5 ) /sqrt (sum(w M) )

Utheta M<−thetabar M+qnorm( . 9 7 5 ) /sqrt (sum(w M) )

return ( l i s t ( rho M, thetabar M, Ltheta M, Utheta M) )

}
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A.5 Function for meta-analysis of relative risk using ρMP

##R ver s i on 3 . 5 . 0

############grp− l e v e l outcome data######################

### | Event |No event |
### Treatment | a i | b i |
### Contro l | c i | d i |
### K i s the number o f s t u d i e s

### ai and c i are number o f even t s in T and C arms

my MP function g e n e r i c<−function ( ai , c i , bi , d i ) {
k<−length ( a i )

fMP<−function ( g , sigma2 , theta , a i , k ) {
sum( ( theta−sum( theta/ ( sigma2∗(1+a i ∗g ) ) )

/sum(1/ ( sigma2∗(1+a i ∗g ) ) ) ) ˆ2/ ( sigma2∗(1+a i ∗g ) ) )−(k−1)}
p1i<−( a i +0.5)/ ( a i+bi +1)

p2i<−( c i +0.5)/ ( c i+di +1)

p s i i<−( a i +0.5)∗ ( ( c i+di ) +0.5)/ ( ( c i +0.5)∗ ( a i+bi +0.5) )

y i <− log ( p s i i )

vi <− 1/ ( a i +0.5) − 1/ ( a i+bi +0.5) + 1/ ( c i +0.5) − 1/ ( c i+di

+0.5)

wi<−1/vi

n1i<−a i+bi

n2 i<−c i+di

n i<−n1i+n2i

Ri<−n1i/n2i

a i<−( Ri∗n i / ( Ri+1) )∗((1+ p s i i−2∗p1i )/ ( Ri∗(1−p1i )+p s i i−p1i )

)−1

l l<−max(−1/max( a i ) ,−1/max( n1i−1) ,−1/max( n2i−1) ) +0.00000001

uu<−1000

i f (fMP( l l , sigma2=vi , theta=yi , a i=a i , k=k )∗
fMP(uu , sigma2=vi , theta=yi , a i=a i , k=k )<0)

{
rho MP<−as . numeric ( uniroot (fMP, c ( l l , uu ) , t o l = 0 .0001 ,

sigma2=vi , theta=yi , a i=a i , k=k ) [ 1 ] ) }
w MP<−wi/(1+a i ∗rho MP)

thetabar MP<−sum( y i∗w MP)/sum(w MP)

i f ( rho MP==(−1/max( ni−1) ) | i s . na( thetabar MP) | ( rho MP==(−1/

max( ni−1) )&is . na( thetabar MP) ) ) {
y i maxni<−y i [ n i==max( n i ) ]

wi maxni<−wi [ n i==max( n i ) ]

thetabar MP<−sum( y i maxni∗wi maxni )/sum( wi maxni )

w MP<−wi [ n i==max( n i ) ]

}
Ltheta MP<−thetabar MP−qnorm( . 9 7 5 ) /sqrt (sum(w MP) )
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Utheta MP<−thetabar MP+qnorm( . 9 7 5 ) /sqrt (sum(w MP) )

return ( l i s t ( rho MP, thetabar MP, Ltheta MP, Utheta MP) )

}
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A.6 Function for meta-analysis of relative risk using ρBD

##R ver s i on 3 . 5 . 0

############grp− l e v e l outcome data######################

### | Event |No event |
### Treatment | a i | b i |
### Contro l | c i | d i |
### K i s the number o f s t u d i e s

### ai and c i are number o f even t s in T and C arms

###requ i r ed packages : None

my BD function g e n e r i c<−function ( ai , c i , bi , d i ) {
nT<−ni

nC<−ni

XT<−a i

XC<−c i

k<−length ( a i )

p1 i<−( a i +0.5)/ ( a i+bi +1)

p2i<−( c i +0.5)/ ( c i+di +1)

p s i i<−( a i +0.5)∗ ( ( c i+di ) +0.5)/ ( ( c i +0.5)∗ ( a i+bi +0.5) )

y i<−log ( p s i i )

vi<−1/ ( a i +0.5)−1/ ( a i+bi +0.5)+1/ ( c i +0.5)−1/ ( c i+di +0.5)

wi<−1/vi

n1i<−a i+bi

n2 i<−c i+di

n i<−n1i+n2i

Ri<−n1i/n2i

a i<−( Ri∗n i / ( Ri+1) )∗((1+ p s i i−2∗p1i )/ ( Ri∗(1−p1i )+p s i i−p1i )

)−1

###########################################

###########Breslow−day method##############

rho BD<−numeric (1 )

###Breslow−Day t e s t conf . i n t e r .

rho BDU<−numeric (1 )

rho BDL<−numeric (1 )

l l<−max(−1/max( a i ) ,−1/max( n1i−1) ,−1/max( n2i−1) ) +0.00000001

uu<−1000

##Mantel−Haenzse l e s t imator o f r e l a t i v e r i s k

psiMH<−sum( (nC∗XT)/ (nC+nT) )/sum( (nT∗XC)/ (nC+nT) )

i f (psiMH==1) {X1j=(( a i+c i )∗n1i )/ ( n1 i+n2i ) } else {
X1j<−psiMH∗n1i∗ ( a i+c i )/ ( ( n1 i+n2i )−n1i+psiMH∗n1i )

}
#func t i on f o r the Standard Breslow day t e s t

f<−function ( rho ,X 1 j , X1j , xj , n1j , n2j , nj , k ) {
var j<−( (1/ ( X1j∗(1+( n1j−1)∗rho ) )+1/ ( ( xj−X1j )∗(1+( n2j−1)∗rho ) )
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+1/ ( ( n1j−X1j )∗(1+( n1j−1)∗rho ) )+1/ ( ( nj−xj−n1j+X1j )∗(1+( n2j

−1)∗rho ) ) ) ˆ−1)

var j0<−( (1/ ( ( X1j +.5)∗(1+( n1j−1)∗rho ) )+1/ ( ( xj−X1j +.5)∗(1+( n2j

−1)∗rho ) )+1/ ( ( n1j−X1j +.5)∗(1+( n1j−1)∗rho ) )+1/ ( ( nj−xj−n1j+

X1j +.5)∗(1+( n2j−1)∗rho ) ) ) ˆ−1)

var<−i f e l s e ( i s . na( va r j ) , var j0 , va r j )

var<−i f e l s e (var==0, varj0 , var )

sum( (X 1 j−X1j ) ˆ2/var )−k+1

}

i f ( f (uu , ai , X1j , a i+c i , n1i , n2i , n1 i+n2i , k=k )>0){ rho BD<−1}
i f ( ( f ( l l , a i , X1j , a i+c i , n1i , n2i , n1 i+n2i , k=k )>0)&( f (uu , ai , X1j ,

a i+c i , n1i , n2i , n1 i+n2i , k=k )<0) ) {
rho BD<−as . numeric ( uniroot ( f , c ( l l , uu ) , t o l =0.00001 ,X 1 j=ai ,

X1j=X1j , x j=a i+ci , n1j=n1i , n2j=n2i , nj=(n1i+n2i ) , k=k ) [ 1 ] )

}
###Upper Limit

f 1<−function ( rho ,X 1 j , X1j , xj , n1j , n2j , nj , k ) {
var j<−( (1/ ( X1j∗(1+( n1j−1)∗rho ) )+1/ ( ( xj−X1j )∗(1+( n2j−1)∗rho ) )

+1/ ( ( n1j−X1j )∗(1+( n1j−1)∗rho ) )+1/ ( ( nj−xj−n1j+X1j )∗(1+( n2j

−1)∗rho ) ) ) ˆ−1)

var j0<−( (1/ ( ( X1j +.5)∗(1+( n1j−1)∗rho ) )+1/ ( ( xj−X1j +.5)∗(1+( n2j

−1)∗rho ) )+1/ ( ( n1j−X1j +.5)∗(1+( n1j−1)∗rho ) )+1/ ( ( nj−xj−n1j+

X1j +.5)∗(1+( n2j−1)∗rho ) ) ) ˆ−1)

var<−i f e l s e ( i s . na( va r j ) , var j0 , va r j )

var<−i f e l s e (var==0, varj0 , var )

sum( (X 1 j−X1j ) ˆ2/var )−qchisq ( 0 . 0 2 5 , k−1)

}

i f ( f 1 (uu , ai , X1j , a i+c i , n1i , n2i , n1 i+n2i , k=k )>0){ rho BDU<−1}
i f ( ( f 1 ( l l , a i , X1j , a i+c i , n1i , n2i , n1 i+n2i , k=k )>0)&( f 1 (uu , ai , X1j

, a i+c i , n1i , n2i , n1 i+n2i , k=k )<0) ) {
rho BDU<−as . numeric ( uniroot ( f1 , c ( l l , uu ) , t o l =0.00001 ,X 1 j=ai ,

X1j=X1j , x j=a i+ci , n1j=n1i , n2j=n2i , nj=(n1i+n2i ) , k=k ) [ 1 ] )

}
##Lower Limit

f 2<−function ( rho ,X 1 j , X1j , xj , n1j , n2j , nj , k ) {
var j<−( (1/ ( X1j∗(1+( n1j−1)∗rho ) )+1/ ( ( xj−X1j )∗(1+( n2j−1)∗rho ) )

+1/ ( ( n1j−X1j )∗(1+( n1j−1)∗rho ) )+1/ ( ( nj−xj−n1j+X1j )∗(1+( n2j

−1)∗rho ) ) ) ˆ−1)

var j0<−( (1/ ( ( X1j +.5)∗(1+( n1j−1)∗rho ) )+1/ ( ( xj−X1j +.5)∗(1+( n2j

−1)∗rho ) )+1/ ( ( n1j−X1j +.5)∗(1+( n1j−1)∗rho ) )+1/ ( ( nj−xj−n1j+

X1j +.5)∗(1+( n2j−1)∗rho ) ) ) ˆ−1)

var<−i f e l s e ( i s . na( va r j ) , var j0 , va r j )
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var<−i f e l s e (var==0, varj0 , var )

sum( (X 1 j−X1j ) ˆ2/var )−qchisq ( 0 . 9 7 5 , k−1)

}

i f ( f 2 (uu , ai , X1j , a i+c i , n1i , n2i , n1 i+n2i , k=k )>0){ rho BDL<− l l }
i f ( ( f 2 ( l l , a i , X1j , a i+c i , n1i , n2i , n1 i+n2i , k=k )>0)&( f 2 (uu , ai , X1j

, a i+c i , n1i , n2i , n1 i+n2i , k=k )<0) ) {
rho BDL<−as . numeric ( uniroot ( f2 , c ( l l , uu ) , t o l =0.00001 ,X 1 j=ai ,

X1j=X1j , x j=a i+ci , n1j=n1i , n2j=n2i , nj=(n1i+n2i ) , k=k ) [ 1 ] )

}
####Inver se var iance es t ima t ion o f t h e t a us ing rho BD

##################

w BD<−wi/(1+a i ∗rho BD)

thetabar BD<−sum( y i∗w BD)/sum(w BD)

Ltheta BD<−thetabar BD−qnorm( . 9 7 5 ) /sqrt (sum(w BD) )

Utheta BD<−thetabar BD+qnorm( . 9 7 5 ) /sqrt (sum(w BD) )

return ( l i s t ( rho BD, rho BDL, rho BDU, thetabar BD, Ltheta BD,

Utheta BD) )

}
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B Additional figures

B.1 Estimation of the between-studies variance when τ 2 = 0.1 and

the data are generated under the point-mass option and the

truncation option
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Figure A.1: Relation of estimates of the between-studies variance τ2 to the overall

log-risk-ratio (θ) in K studies, each of total sample size n, when data come from the

binomial-normal model with point mass for τ2 = 0.1 and πjC = 0.1 (solid lines) and

0.3 (dashed). The Mandel-Paule (circle), REML (triangle), and DerSimonian-Laird

(plus) estimation methods are compared with the true variance (cross). Light grey

line at 0.1.
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Figure A.2: Relation of estimates of the between-studies variance τ2 to the overall

log-risk-ratio (θ) in K studies, each of total sample size n, when data come from the

binomial-normal model with truncation for τ2 = 0.1 and πjC = 0.1 (solid lines) and

0.3 (dashed). The Mandel-Paule (circle), REML (triangle), and DerSimonian-Laird

(plus) estimation methods are compared with the true variance (cross). Light grey

line at 0.1.
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B.2 Figures for studentized residuals when K ≥ 10
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Figure A.3: Normal Q-Q plot of the 129 studentized residuals for the studies from

11 REM meta-analyses of RR with θ̂ ≥ 0, τ̂2 > 0 and K ≥ 10 in Cochrane Library

Issue 4.
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Figure A.4: Boxplots of 129 studentized residuals by truncation probability, for the

studies from 11 REM meta-analyses of RR with θ̂ ≥ 0, τ̂2 > 0 and K ≥ 10 in

Cochrane Library Issue 4.
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Figure A.5: Scatterplot (vs. log-risk-ratio from FEM) of the meta-analytic estimates

of log-risk-ratio obtained by:(a) REM, for the 11 REM meta-analyses of RR with

K ≥ 10, θ̂REM ≥ 0 and τ̂2 > 0; (b) bbmle, for the 24 meta-analyses of RR with

K ≥ 10, θ̂bbmle ≥ 0 and ρ̂ > 0; (c) Difference between log(RR) from REM and

bbmle for the 11 meta-analyses with K ≥ 10, ρ̂ > 0 and θ̂bbmle ≥ 0 and τ2 > 0 and

θ̂REM ≥ 0.
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