29 research outputs found

    Sublittoral soft bottom communities and diversity of Mejillones Bay in northern Chile (Humboldt Current upwelling system)

    Get PDF
    The macrozoobenthos of Mejillones Bay (23°S; Humboldt Current) was quantitatively investigated over a 7-year period from austral summer 1995/1996 to winter 2002. About 78 van Veen grab samples taken at six stations (5, 10, 20 m depth) provided the basis for the analysis of the distribution of 60 species and 28 families of benthic invertebrates, as well as of their abundance and biomass. Mean abundance (2,119 individuals m-2) was in the same order compared to a previous investigation; mean biomass (966 g formalin wet mass m-2), however, exceeded prior estimations mainly due to the dominance of the bivalve Aulacomya ater. About 43% of the taxa inhabited the complete depth range. Mean taxonomic Shannon diversity (H', Log e) was 1.54 ± 0.58 with a maximum at 20 m (1.95 ± 0.33); evenness increased with depth. The fauna was numerically dominated by carnivorous gastropods, polychaetes and crustaceans (48%). About 15% of the species were suspensivorous, 13% sedimentivorous, 11% detritivorous, 7% omnivorous and 6% herbivorous. Cluster analyses showed a significant difference between the shallow and the deeper stations. Gammarid amphipods and the polychaete family Nephtyidae characterized the 5-mzone, the molluscs Aulacomya ater, Mitrella unifasciata and gammarids the intermediate zone, while the gastropod Nassarius gayi and the polychaete family Nereidae were most prominent at the deeper stations. The communities of the three depth zones did not appear to be limited by hypoxia during non-El Niño conditions. Therefore, no typical change in community structure occurred during El Niño 1997–1998, in contrast to what was observed for deeper faunal assemblages and hypoxic bays elsewhere in the coastal Humboldt Current system

    CH4 and N2O may contribute more to greenhouse effect than CO2 emission from the SCS

    Full text link
    The South China Sea (SCS) is the largest marginal sea in the world. It is now apparent that in summer tropical seas, such as the SCS, are either close to neutral or are a small source of CO2 to the atmosphere. Methane (CH4) and nitrous oxide (N2O), however, are clearly much more supersaturated in the SCS. In the case of the SCS, the CH4 and N2O released from the surface waters contribute about three times as much to the greenhouse effect as CO2 does. In addition, abnormally high subsurface CH4 concentrations were found on the continental slopes in the northern SCS, as CH4 have been released from sediments and/or may have originated in CH4 gas hydrates. CH4 gas hydrates might become an important source of energy in the future. However, will the buried CH4 be released either due to the warming of the seawater, the internal waves, tropical storms or other disturbances? It may compound the severity of global warming

    Benthic community structure and biomarker responses of the clam Scrobicularia plana in a shallow tidal creek affected by fish farm effluents (Rio San Pedro, SW Spain).

    No full text
    The effects of solid organic wastes from a marine fish farm on sediments were tested using benthic community as ecological indicators and biomarkers in native clam (Scrobicularia plana) as biochemical indicators. The benthic fauna and clam samples were collected in the intertidal sediment in October 2010 from five sites of the Rio San Pedro (RSP) creek, following a gradient of contamination from the aquaculture effluent to the control site. Numbers of species, abundance, richness and Shannon diversity were the biodiversity indicators measured in benthic fauna. Morphological and reproduction status of clams were assessed using the condition factor and gonado-somatic index, respectively. Phase I and Phase II detoxification enzymatic activities (ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST)), antioxidant enzymatic activities (glutathione peroxidase (GPX), glutathione reductase (GR)) and oxidative stress parameters (Lipid Peroxidation (LPO) and DNA strand breaks) were measured in clams' digestive gland tissues. In parallel, temperature and salinity in the adjacent water, redox potential, pH and organic matter in sediment, and dissolved oxygen in the interstitial water were measured. The results suggested that RSP showed a spatial gradient characterised by hypoxia/anoxia, reduced potential, acidic conditions and high organic enrichment in sediments at the most contaminated sites. Significant (p<0.05) decrease of biodiversity indicators were observed in the areas impacted by the aquaculture discharges. Biomarkers did not show a clear pattern and of all biochemical responses tested, GPX, DNA damage and LPO were the most sensitive ones and showed significant (p<0.05) increase in the polluted sites. Benthic biodiversity indicators were significantly (p<0.05) positively correlated with pH, redox potential and dissolved oxygen and negatively correlated with organic matter. On the contrary, antioxidant enzymatic responses (GPX) and oxidative stress parameters were significantly (p<0.05) negatively correlated with those physico-chemical parameters. It has been demonstrated that effluents from fish aquaculture activities in Rio San Pedro creek may produce an alteration of physicochemical characteristics of seabed and induce oxidative stress and DNA damage in soft-sediment species which may lead to changes of the benthic population structure and health status of the exposed organisms. (C) 2012 Elsevier Ltd. All rights reserved

    Application of neutral red retention assay to caged clams (Ruditapes decussatus) and crabs (Carcinus maenas) in the assessment of dredged material.

    No full text
    Dredged material management is a key issue for the protection of aquatic environments. The in situ approach using caged bioindicator species has been chosen lately as a new methodology for the assessment of dredged material. In a tier testing approach, neutral red retention (NRR) assay has been applied as a screening tool to detect adverse changes in health status associated with contamination. Nevertheless, to authors' knowledge, little is known about the application and validation of this technique in sediment bioindicator species and under field conditions. Caged Ruditapes decussatus and Carcinus maenas were exposed during 28 days to potentially contaminated sediments at three sites in Algeciras Bay (SW Spain) and one site in C\ue1diz Bay (SW Spain). Lysosomal membrane stability was measured over time in haemolymph samples of exposed clams and crabs using the NRR assay. Sediment characterization of the study sites was performed in parallel. NRR time did not vary significantly (p > 0.05) over time in organisms from C\ue1diz Bay. Conversely, significant differences (p &lt; 0.05) in NRR time were found in clams and crabs exposed to sediments from Algeciras Bay, which exhibited a 30-70% decrease in haemocyte lysosome membrane stability compared to day 0. Statistical analysis showed a strong correlation between the drop of haemocyte lysosome membrane stability, in both crabs and clams, and the presence of metals (p &lt; 0.05) and PAHs (p &lt; 0.01) in the studied sediments. The results obtained confirmed the use of NRR assay as a suitable and sensitive method to be used in the assessment of sediment quality using as bioindicator species the clam R. philippinarum and the crab C. maenas

    Source and impact of lead contamination on delta-aminolevulinic acid dehydratase activity in several marine bivalve species along the Gulf of Cadiz

    No full text
    Coastal areas and estuaries are particularly sensitive to metal contamination from anthropogenic sources and in the last few decades the study of space-time distribution and variation of metals has been extensively researched. The Gulf of Cadiz is no exception, with several rivers draining one of the largest concentrations of sulphide deposits in the world, the Iberian Pyrite Belt (IPB). Of these rivers, the Guadiana, one of the most important in the Iberian Peninsula, together with smaller rivers like the Tinto and Odiel, delivers a very high metal load to the adjacent coastal areas. The purpose of this work was to study the source and impact of lead (Pb) drained from historical or active mining areas in the IPB on the activity of a Pb inhibited enzyme (δ-aminolevulinic acid dehydratase, ALAD) in several bivalve species along the Gulf of Cadiz. Seven marine species (Chamelea gallina, Mactra corallina, Donax trunculus, Cerastoderma edule, Mytilus galloprovincialis, Scrobicularia plana and Crassostrea angulata) were collected at 12 sites from Mazagón, near the mouth of the rivers Tinto and Odiel (Spain), to Cacela Velha (Ria Formosa lagoon system, Portugal). Lead concentrations, ALAD activity and lead isotope ratios ((206)Pb/(204)Pb, (207)Pb/(204)Pb and (208)Pb/(204)Pb) were determined in the whole soft tissues. The highest Pb concentrations were determined in S. plana (3.50±1.09 μg g(-1) Pb d.w.) and D. trunculus (1.95±0.10 μg g(-1) Pb d.w.), while M. galloprovincialis and C. angulata showed the lowest Pb levels (<0.38 μg g(-1) Pb d.w.). In general, ALAD activity is negatively correlated with total Pb concentration. However this relationship is species dependent (e.g. linear for C. gallina ALAD=-0.36[Pb]+0.79; r=0.837; or exponential for M. galloprovincialis ALAD=2.48e(-8.3[Pb]); r=0.911). This indicates that ALAD activity has considerable potential as a biomarker of Pb and moreover, in marine bivalve species with different feeding habits. Lead isotope data showed significant seasonal and spatial changes in bivalve isotopic composition reflecting seasonal and geographic differences in bioaccumulation. Within the study area, Pb can be modelled as a mixing between geogenic Pb and mine-related, discharges of Pb from the IPB. For some sites at the mouth of the Guadiana River, the bivalves show contamination from other anthropogenic sources, such as leaded boat/aviation fuel and/or leaded paint. Finally, the study demonstrates convincingly the need to consider species-specific variation when using bivalve ALAD activity as a biomarker for Pb.European Union (EU) - UTPIA/SP5.P9/02-INTERREG IIIAinfo:eu-repo/semantics/publishedVersio
    corecore