1,943 research outputs found
Carbonaceous Materials Coated Carbon Fibre Reinforced Polymer Matrix Composites
Carbon fibre reinforced polymer composites have high mechanical properties that make them exemplary engineered materials to carry loads and stresses. Coupling fibre and matrix together require good understanding of not only fibre morphology but also matrix rheology. One way of having a strongly coupled fibre and matrix interface is to size the reinforcing fibres by means of micro- or nanocarbon materials coating on the fibre surface. Common coating materials used are carbon nanotubes and nanofibres and graphene, and more recently carbon black (colloidal particles of virtually pure elemental carbon) and graphite. There are several chemical, thermal, and electrochemical processes that are used for coating the carbonous materials onto a carbon fibre surface. Sizing of fibres provides higher interfacial adhesion between fibre and matrix and allows better fibre wetting by the surrounded matrix material. This review paper goes over numerous techniques that are used for engineering the interface between both fibre and matrix systems, which is eventually the key to better mechanical properties of the composite systems
Synthesis of some new propanamide derivatives bearing 4- piperidinyl-1,3,4-oxadiazole, and their evaluation as promising anticancer agents
Purpose: To sequentially synthesize piperidine-4-carboxylic acid ethyl ester-appended 1,3,4-oxadiazole hybrids and to evaluate them as anticancer agents.Methods: Ethyl 1-[(4-methylphenyl)sulfonyl]-4-piperidinecarboxylate (1) was synthesized from 4- methylbenzenesulfonylchloride (a) and ethyl 4-piperidinecarboxylate (b). Compound (1) was converted into ethyl 1-[(4-methylphenyl)sulfonyl]-4-piperidine carbohydrazides (2) and 5-{1-[(4- methylphenyl)sulfonyl]-4-piperidinyl}-1,3,4-oxadiazole-2-thiol (3) respectively. A variety of aryl amine (4a-l) were treated with 2-bromopropionylbromide to synthesize an array of propanamide (5a-l). Finally, 5-{1-[(4-methylphenyl)sulfonyl]-4-piperidinyl}-1,3,4-oxadiazole-2-thiol (3) and propanamides (5a-l) were reacted to synthesize target compounds (6a-l). Purity compounds 6a-l was confirmed by spectroscopic techniques like (1H-NMR), (13C-NMR) and EI-MS. To determine their anticancer potential, the change in absorbance of mixture and cell line before and after incubation was determined.Results: All the compounds 6a-l were successfully synthesized in 73-85 % yield. Compounds 6h, 6j and 6e have low IC50 (±SD) values of 20.12 ± 6.20, 10.84 ± 4.2 and 24.57 ± 1.62 μM to act as strong anticancer agents relative to doxorubicin (0.92 ± 0.1 μM) used as a reference.Conclusion: The synthesized propanamide derivatives bearing 4-piperidinyl-1,3,4-oxadiazole are potential anticancer agents, but further studies, especially in vivo, are required to ascertain their therapeutic usefulness.Keywords: Ethyl isonipecotate, Propanamides, 1,3,4-Oxadiazole, Anti-cancer activit
Outbreak of Middle East Respiratory Syndrome at Tertiary Care Hospital, Jeddah, Saudi Arabia, 2014
During March–May 2014, a Middle East respiratory syndrome (MERS) outbreak occurred in Jeddah, Saudi Arabia, that included many persons who worked or received medical treatment at King Fahd General Hospital. We investigated 78 persons who had laboratory-confirmed MERS during March 2–May 10 and documented contact at this hospital. The 78 persons with MERS comprised 53 patients, 16 healthcare workers, and 9 visitors. Among the 53 patients, the most probable sites of acquisition were the emergency department (22 patients), inpatient areas (17), dialysis unit (11), and outpatient areas (3). Infection control deficiencies included limited separation of suspected MERS patients, patient crowding, and inconsistent use of infection control precautions; aggressive improvements in these deficiencies preceded a decline in cases. MERS coronavirus transmission probably was multifocal, occurring in multiple hospital settings. Continued vigilance and strict application of infection control precautions are necessary to prevent future MERS outbreaks
The cross on rings performed by an Olympic champion
The cross is a key skill in Male Artistic Gymnastics rings routines. However, few researches were found about this skill. There is knowledge about the forces needed to perform the cross, or about muscles activation, separately. The aim of this paper was to accomplish a comprehensive research about the biomechanics of cross on rings, in order to obtain a descriptive model about this skill. Therefore, the currently Olympic champion on rings event volunteered in this research. He performed three crosses with the usual apparatus in his training gym. The measurement methods were combined: One digital video camera, one strain gauge in each cable and surface electromyography of nine right shoulder muscles were used. Statistical analyses
were performed by parametric and non parametric tests and descriptive statistics. Symmetry values were calculated for shoulder angles and cables of right and left side. Coefficient of variation of muscle activation and co contraction were verified. Within gymnast variability was calculated using biological coefficient of variation (BCV), discretely for kinematic measures. Low variability values of shoulder angles and cable forces were verified and low values of asymmetry as well. Muscle activation varied according to muscle function, while co-contraction values were different among trials. These results pointed out the
characteristics of the cross performed by an elite gymnast. Knowledge about the characteristics of cross can inform coaches, practitioners and clinicians how a successful skill should be presented
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
Approximation Techniques for Stochastic Analysis of Biological Systems
There has been an increasing demand for formal methods in the design process
of safety-critical synthetic genetic circuits. Probabilistic model checking
techniques have demonstrated significant potential in analyzing the intrinsic
probabilistic behaviors of complex genetic circuit designs. However, its
inability to scale limits its applicability in practice. This chapter addresses
the scalability problem by presenting a state-space approximation method to
remove unlikely states resulting in a reduced, finite state representation of
the infinite-state continuous-time Markov chain that is amenable to
probabilistic model checking. The proposed method is evaluated on a design of a
genetic toggle switch. Comparisons with another state-of-art tool demonstrates
both accuracy and efficiency of the presented method
Computing Branching Distances Using Quantitative Games
We lay out a general method for computing branching distances between labeled
transition systems. We translate the quantitative games used for defining these
distances to other, path-building games which are amenable to methods from the
theory of quantitative games. We then show for all common types of branching
distances how the resulting path-building games can be solved. In the end, we
achieve a method which can be used to compute all branching distances in the
linear-time--branching-time spectrum
A Parsimony Approach to Biological Pathway Reconstruction/Inference for Genomes and Metagenomes
A common biological pathway reconstruction approach—as implemented by many automatic biological pathway services (such as the KAAS and RAST servers) and the functional annotation of metagenomic sequences—starts with the identification of protein functions or families (e.g., KO families for the KEGG database and the FIG families for the SEED database) in the query sequences, followed by a direct mapping of the identified protein families onto pathways. Given a predicted patchwork of individual biochemical steps, some metric must be applied in deciding what pathways actually exist in the genome or metagenome represented by the sequences. Commonly, and straightforwardly, a complete biological pathway can be identified in a dataset if at least one of the steps associated with the pathway is found. We report, however, that this naïve mapping approach leads to an inflated estimate of biological pathways, and thus overestimates the functional diversity of the sample from which the DNA sequences are derived. We developed a parsimony approach, called MinPath (Minimal set of Pathways), for biological pathway reconstructions using protein family predictions, which yields a more conservative, yet more faithful, estimation of the biological pathways for a query dataset. MinPath identified far fewer pathways for the genomes collected in the KEGG database—as compared to the naïve mapping approach—eliminating some obviously spurious pathway annotations. Results from applying MinPath to several metagenomes indicate that the common methods used for metagenome annotation may significantly overestimate the biological pathways encoded by microbial communities
Is there a uniform approach to the management of diffuse parenchymal lung disease (DPLD) in the UK? A national benchmarking exercise
BACKGROUND: Benchmarking is the comparison of a process to the work or results of others. We conducted a national benchmarking exercise to determine how UK pulmonologists manage common clinical scenarios in diffuse parenchymal lung disease (DPLD), and to determine current use and availability of investigative resources. We compared management decisions to existing international guidelines. METHODS: Consultant members of the British Thoracic Society were mailed a questionnaire seeking their views on the management of three common scenarios in DPLD. They were asked to choose from various management options for each case. Information was also obtained from the respondents on time served as a consultant, type of institution in which they worked and the availability of a local radiologist and histopathologist with an interest/expertise in thoracic medicine. RESULTS: 370 out of 689 consultants replied (54% response rate). There were many differences in the approach to the management of all three cases. Given a scenario of relapsing pulmonary sarcoidosis in a lady with multiple co-morbidities, half of respondents would institute treatment with a variety of immunosuppressants while a half would simply observe. 42% would refer a 57-year old lady with new onset DPLD for a surgical lung biopsy, while a similar number would not. 80% would have referred her for transplantation, but a fifth would not. 50% of consultants from district general hospitals would have opted for a surgical biopsy compared to 24% from cardiothoracic centres: this may reflect greater availability of a radiologist with special interest in thoracic imaging in cardiothoracic centres, obviating the need for tissue diagnosis. Faced with an elderly male with high resolution CT thorax (HRCT) evidence of usual interstitial pneumonia (UIP), three quarters would observe, while a quarter would start immunosuppressants. 11% would refer for a surgical biopsy. 14% of UK pulmonologists responding to the survey revealed they had no access to a radiologist with an interest in thoracic radiology. CONCLUSION: From our survey, it appears there is a lack of consensus in the management of DPLD. This may reflect lack of evidence, lack of resources or a failure to implement current guidelines
- …