19 research outputs found

    Rugged Single Domain Antibody Detection Elements for Bacillus anthracis Spores and Vegetative Cells

    Get PDF
    Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs) were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors

    Current Status and Perspectives of the OECD/NEA sub-group on Uncertainty Analysis in Modelling (UAM) for Design, Operation and Safety Analysis of SFRs (SFR-UAM)

    Get PDF
    International audienceAn OECD/NEA sub-group on Uncertainty Analysis in Modelling (UAM) for Design, Operation and Safety Analysis of Sodium-cooled Fast Reactors (SFR-UAM) has been formed under the NSC/WPRS/EGUAM to check the use of best-estimate codes and data. This work comes from the desire to design reactors with improved safety performance while preserving a sustainable source of energy at a rather low cost. Two SFR cores are being studied a large 3600MWth oxide core and a medium 1000MWth metallic core. In order to assess tools being used for studying these cores, various sub-exercises have been set up for what concerns neutronics with cell, sub-assembly, super-cell and core benchmarks under steady state conditions either at BOL conditions or at EOEC. A sub-assembly depletion benchmark is being set up before going into full core calculations with depletion. Since the objective is to define the grace period or the margin to melting available in the different accident scenarios and this within uncertainty margins, uncertainties of different origins (methods, neutronics, thermal-hydraulic, fuel behavior) once identified and evaluated will be propagated through. In order to ensure validity to these exercises, the sub-group incorporates some experimental validations on neutronics, thermal hydraulics, fuels and systems. This will be done with experiments from IRPhE et ICSBEP, SEFOR, THORS and the SUPER-PHENIX start-up transient programme
    corecore