447 research outputs found

    Atomic-scale perspective on the origin of attractive step interactions on Si(113)

    Full text link
    Recent experiments have shown that steps on Si(113) surfaces self-organize into bunches due to a competition between long-range repulsive and short-range attractive interactions. Using empirical and tight-binding interatomic potentials, we investigate the physical origin of the short-range attraction, and report the formation and interaction energies of steps. We find that the short-range attraction between steps is due to the annihilation of force monopoles at their edges as they combine to form bunches. Our results for the strengths of the attractive interactions are consistent with the values determined from experimental studies on kinetics of faceting.Comment: 4 pages, 3 figures, to appear in Phys. Rev B, Rapid Communication

    Application of aboutness to functional benchmarking in information retrieval

    Get PDF
    Experimental approaches are widely employed to benchmark the performance of an information retrieval (IR) system. Measurements in terms of recall and precision are computed as performance indicators. Although they are good at assessing the retrieval effectiveness of an IR system, they fail to explore deeper aspects such as its underlying functionality and explain why the system shows such performance. Recently, inductive (i.e., theoretical) evaluation of IR systems has been proposed to circumvent the controversies of the experimental methods. Several studies have adopted the inductive approach, but they mostly focus on theoretical modeling of IR properties by using some metalogic. In this article, we propose to use inductive evaluation for functional benchmarking of IR models as a complement of the traditional experiment-based performance benchmarking. We define a functional benchmark suite in two stages: the evaluation criteria based on the notion of "aboutness," and the formal evaluation methodology using the criteria. The proposed benchmark has been successfully applied to evaluate various well-known classical and logic-based IR models. The functional benchmarking results allow us to compare and analyze the functionality of the different IR models

    Self-organization of (001) cubic crystal surfaces

    Full text link
    Self-organization on crystal surface is studied as a two dimensional spinodal decomposition in presence of a surface stress. The elastic Green function is calculated for a (001)(001) cubic crystal surface taking into account the crystal anisotropy. Numerical calculations show that the phase separation is driven by the interplay between domain boundary energy and long range elastic interactions. At late stage of the phase separation process, a steady state appears with different nanometric patterns according to the surface coverage and the crystal elastic constants

    Current Distribution in the Three-Dimensional Random Resistor Network at the Percolation Threshold

    Full text link
    We study the multifractal properties of the current distribution of the three-dimensional random resistor network at the percolation threshold. For lattices ranging in size from 838^3 to 80380^3 we measure the second, fourth and sixth moments of the current distribution, finding {\it e.g.\/} that t/ν=2.282(5)t/\nu=2.282(5) where tt is the conductivity exponent and ν\nu is the correlation length exponent.Comment: 10 pages, latex, 8 figures in separate uuencoded fil

    Shapes, contact angles, and line tensions of droplets on cylinders

    Full text link
    Using an interface displacement model we calculate the shapes of nanometer-size liquid droplets on homogeneous cylindrical surfaces. We determine effective contact angles and line tensions, the latter defined as excess free energies per unit length associated with the two contact lines at the ends of the droplet. The dependences of these quantities on the cylinder radius and on the volume of the droplets are analyzed.Comment: 26 pages, RevTeX, 10 Figure

    Branching ratios of B+D()+K()0B^+ \to D^{(*)+}K^{(*)0} decays in perturbative QCD approach

    Full text link
    We study the rare decays B+D()+K()0B^+ \to D^{(*)+}K^{(*)0}, which can occur only via annihilation type diagrams in the standard model. We calculate all of the four modes, BPP,VP,PV,VVB \to PP, VP, PV, VV, in the framework of perturbative QCD approach and give the branching ratios of the order about 10610^{-6}.Comment: 18 pages, 1 figure, Revte

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    Current assessment of the Red Rectangle band problem

    Full text link
    In this paper we discuss our insights into several key problems in the identification of the Red Rectangle Bands (RRBs). We have combined three independent sets of observations in order to try to define the constraints guiding the bands. We provide a summary of the general behavior of the bands and review the evidence for a molecular origin of the bands. The extent, composition, and possible absorption effects of the bands are discussed. Comparison spectra of the strongest band obtained at three different spectral resolutions suggests that an intrinsic line width of individual rotational lines can be deduced. Spectroscopic models of several relatively simple molecules were examined in order to investigate where the current data are weak. Suggestions are made for future studies to enhance our understanding of these enigmatic bands

    Case study of the diurnal variability of chemically active species with respect to boundary layer dynamics during DOMINO

    Get PDF
    We study the interactions between atmospheric boundary layer (ABL) dynamics and atmospheric chemistry using a mixed-layer model coupled to chemical reaction schemes. Guided by both atmospheric and chemical measurements obtained during the DOMINO (Diel Oxidant Mechanisms in relation to Nitrogen Oxides) campaign (2008), numerical experiments are performed to study the role of ABL dynamics and the accuracy of chemical schemes with different complexity: the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) and a reduced mechanism of this chemical system. Both schemes produce satisfactory results, indicating that the reduced scheme is capable of reproducing the O3-NOx-VOC-HOx diurnal cycle during conditions characterized by a low NOx regime and small O3 tendencies (less than 1 ppb per hour). By focusing on the budget equations of chemical species in the mixedlayer model, we show that for species like O3, NO and NO2, the influence of entrainment and boundary layer growth is of the same order as chemical production/loss. This indicates that an accurate representation of ABL processes is crucial in understanding the diel cycle of chemical species. By comparing the time scales of chemical reactive species with the mixing time scale of turbulence, we propose a classification based on the Damk¨ohler number to further determine the importance of dynamics on chemistry during field campaigns. Our findings advocate an integrated approach, simultaneously solving the ABL dynamics and chemical reactions, in order to obtain a better understanding of chemical pathways and processes and the interpretation of the results obtained during measurement campaigns
    corecore