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Experimental approaches are widely employed to benchmark the performance of an information
retrieval (IR) system. Measurements in terms of recall and precision are computed as performance
indicators. Although they are good at assessing the retrieval effectiveness of an IR system, they fail
to explore deeper aspects such as its underlying functionality and explain why the system shows
such performance. Recently, inductive (i.e., theoretical) evaluation of IR systems has been proposed
to circumvent the controversies of the experimental methods. Several studies have adopted the
inductive approach, but they mostly focus on theoretical modeling of IR properties by using some
metalogic. In this article, we propose to use inductive evaluation for functional benchmarking of
IR models as a complement of the traditional experiment-based performance benchmarking. We
define a functional benchmark suite in two stages: the evaluation criteria based on the notion of
“aboutness,” and the formal evaluation methodology using the criteria. The proposed benchmark
has been successfully applied to evaluate various well-known classical and logic-based IR models.
The functional benchmarking results allow us to compare and analyze the functionality of the
different IR models.
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1. INTRODUCTION

The information retrieval (IR) problem can be described as a quest to find the
set of relevant information objects (i.e., documents D) corresponding to a given
information need, represented by a query Q . The assumption is that the query
Q is a good description of the information need N . An often used premise
in IR is the following: if a given document D is about the request Q , then
there is a high likelihood that D will be relevant with respect to the associated
information need. Thus the information retrieval problem is reduced to deciding
the aboutness relation between documents and queries.

Articles on aboutness have appeared sporadically in the literature for more
than two decades. Hutchins [1977] provides a thoughtful early study of the topic.
This account attempts to define a notion of aboutness in terms of a combination
of linguistic and discourse analyses of a text. At a high level of information
granularity, such as a sentence, Hutchins introduces themes and rhemes as the
carriers of the thematic progression of a text. Roughly speaking, the theme
states what the writer intends to express in the sentence (i.e., what it is about),
and the rheme is the “new” information. Thematic elements of a sentence are
typically bound textually to the preceding text, or assumed as given within the
current context. Hutchins also considers how sequences of sentences combine to
form textual elements of lower information granularity such as an episode. In
other words, sentences are considered to be a part of the micro structure of the
text, whereas an episode is considered to be an element of its macrostructure.
Themes and rhemes can be generalized to the macro level. Hutchins asserts,
“The thematic part of the text expresses what the text is ‘about,’ while the
rheme expresses what the author has to say about it” [Hutchins 1977, p. 31].

Maron [1977] tackled aboutness by relating it to a probability of satisfaction.
Three types of aboutness were characterized: S-about, O-about, and R-about.
S-about (i.e., subjective about) is a relationship between a document and the
resulting inner experience of the user. O-about (i.e., objective about) is a re-
lationship between a document and a set of index terms. More specifically, a
document D is about a term set T if user X employs T to search for D. R-about
(i.e., retrieval about) purports to be a generalization of O-about to a specific
user community (i.e., a class of users). Let ti be an index term and D be a docu-
ment; then “D is R-about ti” is defined as the ratio between the number of users
satisfied with D when using ti to formulate the request for information and the
number of users satisfied by D. Using this as a point of departure, Maron fur-
ther constructs a probabilistic model of R-aboutness. The advantage of this is
that it leads to an operational definition of aboutness which can then be tested
experimentally. However, once the step has been made into the probabilistic
framework, it becomes difficult to study properties of aboutness; for example,
how does R-about behave under conjunction? By way of illustration, assume doc-
ument D is characterized by the index terms K1, . . . , Kn. From a logical point
of view, D can be viewed as being represented by the conjunction K1 ∧ · · · ∧Kn.
Assume that D is R-about term ti. One can translate this relationship between
a document and term into a relation between the document representation
K1 ∧ · · · ∧ Kn and term ti (now viewed as an atomic logical formula). What
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happens to the aboutness relationship if information, represented by the term
Kn+1 is added to document D: is K1 ∧ · · · ∧ Kn ∧ Kn+1 about ti? In other words,
is aboutness monotonic with respect to the composition of information? Such
questions cannot be answered within a probabilistic framework. The underly-
ing problem relates to the fact that probabilistic independence lacks properties
with respect to conjunction and disjunction. In other words, one’s hands are
largely tied when trying to express qualitative properties of aboutness within
a probabilistic setting. (For this reason Dubois et al. [1997] developed a quali-
tative framework for relevance using possibility theory).

During the 1980s and early 1990s, the issue of aboutness remained hidden
in the operational definitions of various retrieval models and their variations.
For example, the vector space model represents both documents and queries
as vectors in a high-dimensional space whereby the dimensions correspond to
information-bearing terms. If the angle between the respective document and
query vectors is above a certain threshold, the document is deemed to be about
the query. This period also featured the emergence of sophisticated probabilis-
tic retrieval models. Major effort was expended in producing ever more so-
phisticated matching functions between document and query representations.
Such matching functions were evaluated by an experimental paradigm. The
paradigm often has the following form. Given a set of test queries and a collec-
tion of documents, a set of relevant documents are a priori associated with each
test query. In the actual experiment, a matching function produces a ranked list
of documents descending on match score between a test query and a particular
document representation. The performance of a matching function can be mea-
sured by studying the degree to which relevant documents are moved towards
the top of the ranking produced by the matching function under observation.
Statistical tests of significance can be applied to compare average performances
of two ranking functions across the set of test queries, thus gaining some con-
fidence that matching function A produces, on average, better rankings than
matching function B. The experimental paradigm has long been one of the cor-
nerstones of research into information retrieval, but it has long been debated
as well. It is outside the scope of this article to descend into the controver-
sies surrounding experimental information retrieval, but we illustrate one of
its manifestations. Many of the more sophisticated matching functions rely on
constants. The values of these constants can greatly influence the performance
of the matching function. The specific values of the constants are not derived
from theory, but are “tuned” according to a particular document collection and
test query set.

The emergence of logic-based information retrieval in the mid-1980s allowed
the matching function between document and query to be seen in a new light.
In one of the founding papers Van Rijsbergen [1986a] states, “The single prim-
itive operation to aid retrieval is one of uncertain implication.” In other words,
retrieval could be viewed as a process of plausibly inferring the query from
the document. This view spawned a number of attempts at implementing logic-
based retrieval systems (see Lalmas and Bruza [1998] for a survey and Crestani
et al.[1998] for a compendium). Logic-based information retrieval also provided
the framework to allow theoretical, rather than experimental, investigations in
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IR [Sebastiani 1998]. It planted the seed for fundamental investigations of the
nature of aboutness [Bruza and Huibers 1994, 1996; Hunter 1996; Nie et al.
1995] culminating in an axiomatic theory of information retrieval [Huibers
1996] and a characterization of aboutness in the terms of commonsense rules
[Bruza et al. 2000a]. Aboutness theory has also recently appeared in the con-
text of information discovery [Proper and Bruza 1999]. Broadly speaking, these
works view information retrieval as a reasoning process, determining aboutness
between two information carriers (e.g., a document about a query, or a document
about a document). Work in this area attempted to symbolically characterize
qualitative aspects of the matching function, which, up to that point, were nor-
mally hidden in the numeric expressions of these functions. In a broad sense an
attempt was made to flesh out the assumptions underpinning matching func-
tions, and more generally to provide a symbolic IR-centric account of “the most
important relationship in IR—the one in which one object contains information
about another” (italics ours) [Van Rijsbergen 1993]. An important consequence
of logic-based information retrieval was that it allowed IR to be studied symbol-
ically within a neutral framework; for example, researchers were free to posit
questions such as: Is aboutness transitive, or is the aboutness relationship pre-
served under the composition of information? Once properties of aboutness are
described by a set of postulates, they can be used to compare IR models de-
pending on which aboutness postulates they support [Bruza and Huibers 1994;
Huibers 1996; Bruza et al. 2000a]. This opens the door to an inductive, rather
than experimental, theory of comparing matching functions. The development
of an inductive theory of information retrieval evaluation parallels a similar
development in the area of nonmonotonic reasoning. Throughout the 1980s a
number of logics were proposed to model commonsense reasoning, for example,
default logic, autoepistemic logic, circumscription and so on. At that time, there
was no way to compare these different logics until the metatheory of nonmono-
tonic reasoning appeared [Kraus et al. 1990]. This theory embodied a suite if
desired properties of nonmonotonic logic in terms of rules interpreted in a neu-
tral framework (in this case, preferential models). By using this framework, the
previously mentioned logics could be compared according to which properties
they supported.

The theoretical analysis and comparison of information retrieval models
need not take place within a logic-based framework. Losee [1997, 1998] pro-
vides an analytic theory. He states that a theory of the operation of text filter-
ing and retrieval systems should describe current performance, predict future
performance, and explain performance. The difference between Losee’s analyt-
ical theory and the logic-based inductive theory is more in approach and scope
rather than philosophical point of departure. Both aim to gain understanding
of why particular IR systems perform the way they do. Losee’s analytic theory is
statistically based. Measures such as the average search length (ASL, expected
position of a relevant document) are used to analyse the quality of a ranking
of documents in the context of a hypothesized database. For example, ASL can
be plotted against the probability that a given term is in a relevant document
yielding a surface. It has been shown that when this probability increases, the
ASL steadily and more strongly decreases due to the increase in discrimination

ACM Transactions on Information Systems, Vol. 19, No. 4, October 2001.



Application of Aboutness to Functional Benchmarking • 341

power of the terms. This is reflected in the plots by pivoting of the surface away
from the median (random) performance of ASL. In this way, the Boolean and
probabilistic retrieval models have been scrutinized from a theoretical point
of view [Losee 1997]. In contrast to Losee’s analytical theory, the logic-based
inductive theory focuses primarily on describing the aboutness properties em-
bodied by a given matching function, and analyzing and comparing matching
functions according to which aboutness postulates they support. “Functional
benchmarking” is the general term coined for such analysis [Song et al. 1999].

The primary objective of this article is to propose a formal methodology for
functional benchmarking and apply it to inductive evaluation and compari-
son of various typical IR models. Our evaluation targets in this article were
deliberately chosen to review the practicality of the proposed benchmark. We
have evaluated and compared the functionality of the more prominent classical
and logical IR models—Boolean, naı̈ve (i.e., zero-threshold and binary) vector
space, threshold vector space (multivalued), probabilistic, situation theory-
based, naı̈ve (i.e., zero-threshold and binary) possible world-based and thresh-
old possible world-based (multivalued) IR models. The advantages and disad-
vantages of the properties inherent to these models and how these properties
affect effectiveness are analyzed. Furthermore, some important experimental
results could be explained theoretically via the benchmarking. It is hoped this
will shed light on existing IR models and help further research towards more
effective IR models.

The rest of the article is organized as follows. In the next section (i.e.,
Section 2), the definition of the functional benchmark is outlined. The bench-
mark is based on the aboutness framework proposed by Bruza et al. [Bruza
and Huibers 1994, 1996; Bruza et al. 2000a]. A formal functional benchmark-
ing methodology is also proposed in this section. Sections 3 and 4 then present
the evaluation of some classical [Van Rijsbergen 1979; Salton 1988, etc.] and
logical IR models [Bruza and Lalmas 1996; Lalmas 1998; Lalmas and Bruza
1998], respectively, using the proposed benchmark. Finally, a conclusion includ-
ing a summary of the evaluation results is given in Section 5.

2. DEFINING THE FUNCTIONAL BENCHMARK SUITE

Our approach in defining the functional benchmark suite is performed in stages.
(a) We first identify a set of aboutness properties, which are used to analyze
matching functions. They are used as the evaluation criteria for the functional
benchmark. (b) We then define a formal methodology outlining the steps to
perform inductive evaluation.

2.1 Property of Aboutness

Despite several research studies devoted to aboutness, there is still no con-
sensus on the desirable properties of the aboutness relation. Nonetheless, a
number of properties are commonly discussed in the literature, for example, re-
flexivity, transitivity, symmetry, simplification, supraclassicality, equivalence,
and right weakening and left (right) monotonicity [Lalmas and Bruza 1998].
The primary reason for the lack of consensus is the fact that the logic-based
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framework chosen has some influence on the associated aboutness properties.
One would think that reflexivity, that is, the assumption that an information
carrier (such as a document) is about itself, would not generate any difference
in opinion. However, reflexivity is a property not supported by Hunter’s [1996]
default logic-based aboutness framework, but is supported by Huibers’ [1996]
situation-theoretic framework. In addition, a substantial body of work on defin-
ing aboutness properties has been inspired by symbolic characterizations of the
preferential entailment relation1 found in nonmonotonic reasoning. This has
slanted the corresponding characterizations of aboutness [Bruza and Huibers
1994, 1996; Amati and Georgatos 1996; Bruza and Van Linder 1998]. Recent
work has argued that the aboutness relationship goes beyond the notion of
preferential entailment [Bruza et al. 2000a].

The attempts in the literature to characterize the aboutness relationship
have been useful to stimulate investigation into what “aboutness” really is
without being burdened by the baggage of a particular retrieval model. An
unfortunate consequence of this freedom has been a lack of connection with
commonly accepted notions of IR performance. We argue that aboutness prop-
erties selected for the purposes of functional benchmarking should be able to be
related to the traditional IR performance criteria: Precision2 and Recall.3 This
allows theoretical insights provided by the inductive evaluation to be correlated
with insights gleaned via experimental evaluation.

The inductive evaluation paradigm requires that the aboutness properties be
expressed symbolically. This in turn requires that a conceptual framework be
established which provides a sufficient diversity of concepts with which useful
aboutness properties can be expressed. In this regard, Lalmas and Bruza [1998]
have stated: “The framework should not be biased towards any given model,
i.e., it should be neutral. Moreover, it should be sufficiently abstract to filter
away unnecessary details of the various IR models. In such an abstract and
neutral setting, IR models can be inductively compared.”

In this article, we employ the framework proposed by Bruza et al. [Bruza and
Huibers 1994, 1996; Bruza et al. 2000a]. This framework is abstract and not
biased towards any given IR retrieval model, and is parsimonious with respect
to the number of underlying concepts. Moreover, it is based on notions drawn
from information-based logic. It would seem reasonable to build on research
from this area if one accepts that determining whether a document is about a
query, involves an information-based reasoning process.

In the framework, descriptors, documents, and queries share the same notion
of information carriers. Given two information carriers i and j , the aboutness
between i and j (i.e., i is about j ) is denoted by a binary relation |=; that is, i |= j .
On the other hand, i |6= j denotes “i is not about j .” For example, assuming an
animal context, “penguin” is about “birds,” but “penguin” is not about “flying.”

1The term “migration” preferentially entails “salmon” if and only if all preferred documents on
migration are also about salmon. That is, the user’s information need is assumed to impose a
preferential ordering on the set of underlying documents.
2Precision is defined as the ratio of relevant retrieved documents to retrieved documents.
3Recall is the ratio of relevant retrieved documents to relevant documents.
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Information carriers can be composed. The composition of information is de-
noted by i⊕ j , which contains the information carried by both i and j . It can be
conceived of as a form of informational “meet.” Viewed from a situation-theoretic
perspective [Lalmas 1996], the information composition represents the inter-
section between the situations supporting i and the situations supporting j .
For example, flying ⊕ bird represents the intersection of “flying” situations
and “bird” situations, that is, the situations that support the information, “A
bird is flying.”

Information carriers are ordered. For example, we can say, “An information
carrier i contains at least the same information that another carrier j does.”
In the literature, several authors have proposed that information can be or-
dered with respect to containment [Barwise and Etchemendy 1990; Landman
1986]. Information containment, denoted by i → j , is a relation over the in-
formation carriers formalizing the intuition that information is fundamentally
“nested” (see also Van Rijsbergen [1989]). This nesting may simply be a product
of the syntax of the information carriers; for example, in a Boolean language,
i∧ j → i. Information containment also embodies how information is some-
times implicitly nested. For example, the information conveyed by “salmon” also
carries the information “fish.” The former we refer to as surface containment,
and the latter deep containment. In general, information containment (either
surface or deep) is denoted by the symbol→, whereby→ is the union of the re-
lation’s surface containment ( s−→) and deep containment ( d−→). It is important
to make this distinction as some IR models only support surface containment,
whereas others support a notion approximating deep containment. Moreover,
related to the information composition, there are i ⊕ j → i and i ⊕ j → j .

Information carriers i and j are said to preclude each other, denoted i⊥ j , if
the information carried by i clashes with, or contradicts, the information car-
ried by j . It is acceptable to assume that an information carrier precludes its
own negation. However, information preclusion is a more subtle notion than
contradiction in logic. Information carriers may clash due to underlying natu-
ral language semantics, or convention. For example, swimming ⊕ crocodile is
acceptable, but flying ⊕ crocodile is meaningless in most contexts. It has also
been suggested that information preclusion arises in IR as a consequence of
information needs [Bruza and Van Linder 1998]. For example, when searching
for documents about wind surfing, terms such as Internet, Web, net, and so on
may be precluded as the user is not interested in Web surfing. In some accounts,
(e.g., Landman [1986] and Bruza and Huibers [1994]), the composition of clash-
ing information is formalized as the “meaningless” information carrier, denoted
by 0. It is attributed with properties similar to falsum in propositional logic;
for example, i⊥ j⇔ i⊕ j = 0. The meaningless information carrier contains all
the information carriers used in an application.

Furthermore, the concept of an information field is defined. It provides the
necessary building blocks to express the properties of aboutness. An information
field is a structure (J,→,⊕,⊥, 0) where

—J is a nonempty set of information carriers;
—(J,→) is a poset (partially ordered set);
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—0 ∈ J and for all i ∈J, 0→ i;
—if i, j ∈ J then i ⊕ j ∈ J, where i ⊕ j is the largest information carrier such

that i ⊕ j → i and i ⊕ j → j ; and
—⊥ ⊆ J× J.

A set of postulates4 determining the aboutness properties is given in terms of
concepts from the information field. IR models can be mapped to the about-
ness framework. Based on these postulates, the properties they satisfy can be
reflected. Moreover, different IR models can be compared according to the pos-
tulates they support.

Postulate 1: Reflexivity (R)

i |= i.

An information carrier is about itself.

Postulate 2: Containment (C)
i→ j
i |= j

.

An information carrier is about the information it contains (surface or deep).
Deep containment models the transformation of information. For example,
assuming that “penguin” has the information “bird” nested within it (i.e.,
penguin→ bird), then the Containment postulate permits the conclusion that
“penguin” is about “bird(s).” As a consequence, a document about “penguin” is
also about “bird.” This postulate is recall-oriented.

On the other hand, exact match IR models, which attempt to promote preci-
sion, can be defined in terms of surface Containment: D |= Q only if D

s−→ Q .
In other words, document D is not about query Q if D does not include Q (com-
pletely). This can be modeled by the following postulate.

Postulate 3: Closed World Aboutness Assumption (CWAA)

i /→s j
i |6= j

.

If an information carrier i is present in another carrier j , we sometimes infer
that i is not about j . Exact match IR models, such as Boolean retrieval, are
based on the CWAA. For example, if query Q is not contained in a document
D, it is assumed that D is not about Q . CWAA helps improve precision but
degrades the recall, because it ignores the partial matching and the possible
information transformation, which could establish the aboutness relationship
between D and Q . The negative impact of the closed world assumption has been
known for some time [Van Rijsbergen 1986b].

Postulate 4: Right Containment Monotonicity (RCM)

k |= i, i→ j
k |= j

.

4The notion “postulate” is intended to characterize the assumptions inherent within a given re-
trieval mechanism with regard to aboutness.

ACM Transactions on Information Systems, Vol. 19, No. 4, October 2001.



Application of Aboutness to Functional Benchmarking • 345

This postulate allows transitivity of the aboutness relation with respect to in-
formation containment. More implicit aboutness relationships can be derived
via this postulate. Thus it is recall-oriented. For example, given a document d is
about “penguin” and “penguin” contains the information “bird,” we can conclude
that d is also about “bird(s).” From an IR perspective, RCM models term-based
query expansion whereby the term i is replaced by the broader term j .

Postulate 5: Left Compositional Monotonicity (LM)

i |= k
i ⊕ j |= k

.

Postulate 6: Right Compositional Monotonicity (RM)

i |= k
i |= k ⊕ j

.

LM and RM are used as an underlying assumption of some overlap-based IR
models: aboutness is preserved under composition. Therefore, they are recall-
oriented postulates and they could negatively affect the precision (see Bruza
et al. [2000a] for an extended discussion on this topic). By way of illustration,
consider a document d about “emperor penguins” (d |= emperor ⊕ penguin),
so d is also about “penguins” (via RCM: d |= penguin). Right Compositional
Monotonicity allows us to compose arbitrary information on the right-hand
side. Thus, d |= publisher⊕ penguin would be permitted, which is an example
of an unsound aboutness inference that would lead to a loss of precision in the
retrieval mechanism. Query expansion is an example of an IR process that is
not monotonic with respect to information composition. The terms selected to
expand a query must be carefully chosen. This suggests that a conservatively
monotonic process is involved.

The postulates LM and RM can be more clearly related to IR in the following
way. LM models the case whereby aboutness is preserved when information j
is added to a document:

d |= q
d ⊕ j |= q

.

A retrieval function satisfying this property makes aboutness judgment in-
sensitive to a document’s length. In this way, the issue of document length
normalization5 can be characterized at the symbolic level.

RM, on the other hand, can be envisaged as query expansion, or any process
that attempts to improve a query by composing information in it (e.g., pseu-
dorelevance feedback [Xu and Croft 1996]). We have just shown that this is
unsound:

d |= q
d |= q ⊕ j

.

Next, we give some conservative forms of mononicity to constrain how informa-
tion is composed in various ways in order to promote precision.

5Document length normalization improves the effectiveness of retrieval; more sophisticated match-
ing functions normalize according to document length.
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Postulate 7: Mix (M)
i |= k, j |= k

i ⊕ j |= k
.

For example, from “penguin |= bird” and “tweety |= bird,” we can derive
“tweety ⊕ penguin |= bird,” meaning “penguin” is about “bird(s),” “tweety” is
about a “bird,” so “Tweety, the penguin” is about a “bird.”

Postulate 8: Context-Free And (C-FA)
k |= i, k |= j

k |= i ⊕ j
.

Boolean retrieval is founded on this postulate. For example, if a document is
about “computer software” and the same document is about “computer hard-
ware,” it is also about both “computer software and hardware.”

Postulate 9: Guarded Left Compositional Monotonicity (GLM)
i |= k, i 6⊥ j
j ⊕ j |= k

.

Postulate 10: Guarded Right Compositional Monotonicity (GRM)
i |= k, k 6⊥ j

i |= k ⊕ j
.

GLM and GRM are conservative forms of LM and RM. An information carrier
can only be composed in another one when no preclusion relationships are
violated. For example, suppose “penguin” precludes “flying” and “penguin” is
about “bird.” According to GLM, “flying” cannot be composed in “penguin” so
that “flying⊕ penguin |= bird” (flying penguin is about a bird) cannot be derived.

Postulate 11: Qualified Left Monotonicity (QLM)
i |= k, k 6⊥ j

i ⊕ j |= k
.

Postulate 12: Qualified Right Monotonicity (QRM)
i |= k, i 6⊥ j
i |= k ⊕ j

.

QLM and QRM are other conservative forms of LM and RM. LM allows “ bird⊕
tweety |= flying” (Tweety, which is a bird, is about flying) to be inferred from
“bird |= flying” (A bird is about flying). QLM prevents this via the qualifying
preclusion “tweety⊥ flying.” QRM works in a similar way.

The next postulate expresses a principle based on the preservation of “non-
aboutness.”

Postulate 13: Negation Rational (NR)
i|6= k

i|6= k ⊕ j
.

If a document is not about bird, it is impossible to be about flying bird. This is
the intuition behind the postulate NR. Thus it is precision-oriented.
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The above postulates could be classified into recall-oriented and precision-
oriented according on their effects on IR. Postulate R can be considered a start-
ing point of aboutness inference. Postulates C (deep), RCM, LM, RM, and CWA
are mainly recall-oriented because they tend to produce more aboutness re-
lations than exact match. Postulates C-FA, M, GLM, GRM, QLM, QRM, and
NR, on the other hand, intend to prevent undesirable aboutness inferences
by employing some kinds of guarded conditions. This is closely related to the
conservative monotonicity of IR, which is discussed later in Section 5. The Con-
tainment (surface) postulate characterizes exact match IR models, meaning the
query must be fully contained in the document.

2.2 Formal Evaluation Methodology

The functional benchmark for IR is based on a formal methodology for inductive
evaluation. It is conducted in the following steps.

Step A. For each IR model, perform the following.

(A.1) Define the background of the IR model to be evaluated.
(A.2) Map the IR model to the aboutness framework. This includes

the representations of document, query, aboutness decision, con-
tainment, composition, and preclusion.

(A.3) Inductive evaluation. Determine which aboutness postulates
the IR model supports. With respect to an aboutness postulate,
the IR model could fall into one of the following four categories.

—It fully supports the postulate.
—It does not support the postulate.
—It conditionally supports the postulate: the model does not

support the postulate in every situation. Under certain con-
ditions, which are determined extraneously, however, it would
be supported. In this article, “conditionally supporting” is ap-
plicable to models which involve settings or estimations out-
side the models themselves. For example, whether the thresh-
old vector space model, threshold possible world-based model,
and the classical probabilistic model support certain postu-
lates depends on the threshold settings or the estimations.
Note that the notion of “conditionally support” is inapplicable
to IR models not involving extraneous factors.

—The postulate is inapplicable to the model: some operators
involved in the postulate may be foreign (i.e., inapplicable)
to the model. Thus we are unable to evaluate the model us-
ing that postulate. For example, the preclusion operator is
foreign to the vector space model. This in turn implies that
postulates involving the preclusion operator are inapplica-
ble to the vector space model. Practically, this is the same as
“not supported.” This category is separate in order to provide
additional information on why a model fails to support the
postulate.
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Step B. Collect the evaluation results of the different IR models and compare
their functionality.

In the following sections, we use the above-defined functional benchmarking
suite to evaluate and analyze various classical and logical IR models. We only
show the formal proofs of postulates Left Monotonicity (LM) and Right Mono-
tonicity (RM) for illustration. The other postulates can be proven similarly (refer
to Song [2000] for details).

3. INDUCTIVE EVALUATION OF CLASSICAL IR MODELS

The common classical IR models are the Boolean, vector space, and probabilistic
models. In particular, the vector space model is divided into two types, zero-
threshold (binary) and threshold (multivalued) vector space models. The former
is referred to as the naı̈ve vector space model.

3.1 Boolean Model

3.1.1 Background. The Boolean model is based on set theory and Boolean
algebra. This model has been adopted by many early retrieval systems due to
its simplicity. In Boolean retrieval, a document D is represented by a set of
characterization terms X (D) = {t1, t2, . . . , tn}; a query Q is expressed in terms
of index terms combined by Boolean logical connectives AND, OR, and NOT.
A document is retrieved if and only if the query Q can be deduced from X (D)
according to the following set of inference rules.

Rule 1. If ti ∈ X (D) then X (D) ` ti, where ` denotes the logical consequence.
Rule 2. If X (D) ` ti and X (D) ` t j , then X (D) ` ti ∧ t j .

Rule 3. If X (D) ` ti or X (D) ` t j , then X (D) ` ti ∨ t j .

Rule 4. If X (D) 6` ti then X (D) ` ¬ ti.

To generalize, Boolean expressions are assumed to be in CNF (conjunctive nor-
mal form) of DNFs (disjunctive normal form); for example, (t1 ∨ t2) ∧ (t3 ∨ t4) ∧
(t5 ∨ t6).

3.1.2 Boolean Aboutness (|=BL). Let U be the set of all documents, and T be
the set of index terms. Let D be a document (i.e., D ∈U ) and Q a query. Suppose
ti ∈ T , X (D) = {t1, t2, . . . , tn} denotes the set of characterization terms of D. Let
BLOR be the Boolean language defined on T in DNF of ti (or¬ ti). Furthermore,
let Q = q1 ∧q2 ∧ · · · ∧qm be a formula in CNF, where qi ∈ BLOR; that is, qi =
ti1 ∨ ti2 ∨ · · · ∨ tik . Thus, aboutness in the Boolean model is characterized by the
following definition.

—D |=BL Q if and only if X (D) ` Q (Aboutness)
X (D) ` Q if and only if (∀qi) (X (D) ` qi)
X (D) ` qi if and only if (∃ ti j ) (X (D) ` tij)

—If D|6=BL Q then D |=BL ¬Q (Close World Assumption)

—D
s−→ Q if and only if X (D) ` Q (Surface Containment)

—Deep Containment is inapplicable.
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—Let Q1 = q11 ∧ q12 ∧ · · · ∧ q1m and Q2 = q21 ∧ q22 ∧ · · · ∧ q2l ;
Q1→ Q2 if and only if Cl({q11, q12, . . . , q1m})⊇{q21, q22, . . . , q2l }where Cl(Q1)
is defined as the set of DNF formulas that are logical consequences of
q11, q12, . . ., and q1m.

—Q1⊕ Q2⇔ Q1 ∧ Q2 (Query Composition)
—D1⊕ D2⇔ D1 ∪ D2 (Document Composition)
—Suppose D is considered as formula t1 ∧ t2 ∧ · · · ∧ tn, then D⊥Q ⇔ D =
¬Q (Preclusion)

—Q⊥¬ Q .

3.1.3 Inductive Evaluation

THEOREM 1. The Boolean model supports the Postulates R, C (Surface),
C-FA, RCM (Surface), LM, M, GLM, QLM, NR, and CWAA.6 Deep Contain-
ment is inapplicable to this model.

Proofs of LM and RM are shown as below.

—LM: Left Compositional Monotonicity is supported.
Given D1 |=BL Q
⇒ X (D1) ` Q
⇒ X (D1⊕ D2) = X (D1 ∪ D2) ` Q
... D1⊕ D2 |=BL Q .

—RM: Right Compositional Monotonicity is not supported.
Given D |=BL Q1 and Q = Q1⊕ Q2
⇒ X (D) ` Q1 and Q1⊕ Q2⇔ Q1 ∧ Q2
But X (D) ` Q1 ∧ Q2 cannot be concluded
... D |=BL Q1⊕ Q2 cannot be concluded.

3.1.4 Remarks

—The Boolean model is an exact match IR model, thereby promoting precision.
—The Boolean model is left monotonic, rendering it insensitive to document

length.
—The Boolean model supports the closed world assumption, which would neg-

atively affect recall.
—RM is not supported by the Boolean model. Instead, a conservative form,

C-FA, is supported. This would promote precision.

In general, the Boolean model supports a fair degree of precision and is weak in
recall. Its insensitivity to document length makes it less effective than models
whose matching functions support document length normalization.

3.2 Vector Space Model

3.2.1 Background. In the vector space model, both queries and documents
are represented as a vector of weighted or binary index terms. Practically, each

6Note that postulates MIX, GLM, and QLM are trivially supported, as LM is supported.
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index term is treated as an axis in an n-dimensional space. The documents are
ranked by the similarity between the document D and the query Q . There are a
number of measures of vector similarity, such as inner product, dice coefficient,
cosine coefficient, and so on. The commonly used form is the cosine function:

Cos(D, Q) =
∑

i xi yi√∑
i x2

i ×
∑

i y2
i

where

D = {x1, x2, . . . , xn}, Q = { y1, y2, . . . , yn}.
A threshold value is always employed to determine relevance. In the follow-
ing discussions, we first consider the naı̈ve and simplest case of the model.
For this case, the aboutness between D and Q is equivalent to simple overlap-
ping; that is, if D and Q share at least one index term, they are about each other.
We then investigate the more general case of nonzero multivalued threshold.
Note that the threshold value is extraneously controlled. To simplify, we just
consider the case where index terms are unweighted. The case of weighted
terms could be investigated similarly.

3.2.2 Naı̈ve Vector Space Aboutness (|=VS−NAIVE). Let U be the set of all
documents, and T be the set of index terms. Let D ∈ U be a document, and Q
a query. Both D and Q are represented as vectors.

—D = D+ ∪ D−

D+ = {t+1 , t+2 , . . . , t+f }
D− = {t−1 , t−2 , . . . , t−g }
Q = Q+ ∪ Q−

Q+ = {t+1 , t+2 , . . . , t+k }
Q− = {t−1 , t−2 , . . . , t−h }
f + g = k + h = n (dimension of the vector),
where ti ∈ T, t+i is the ith nonzero term in the vector, and t−j is the j th zero
term in the vector.

Based on the above D and Q vectors, the following definitions of naive vector
space aboutness are defined.

—D |=VS−NAIVE Q if and only if D+ ∩ Q+ 6= ∅ (Aboutness)
D 6|=VS−NAIVE Q if and only if D+ ∩ Q+ = ∅

—D
s−→ Q if and only if D+ ⊇ Q+ (Surface Containment)

Q1 s−→ Q2 if and only if Q1+ ⊇ Q2+

—Deep Containment is inapplicable.
—Q = Q1⊕ Q2⇔ Q+ = Q1+ ∪ Q2+ and Q− = (Q1− − Q2+) ∪ (Q2− − Q1+)

(Query Composition)
—D = D1⊕ D2⇔ D+ = D1+ ∪ D2+ and D− = (D1− − D2+) ∪ (D2− − D1+)

(Document Composition)
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—⊥ is inapplicable, as it is not supported in the naive vector space model.

3.2.3 Inductive Evaluation

THEOREM 2. The naive vector space model supports R, C (surface), C-FA,
LM, and RM.7 Deep containment is inapplicable to this model. The postulates
GLM, GRM, QLM, and QRM are inapplicable, as preclusion is inapplicable.

Proofs of LM and RM are shown as below.

—LM: Left Compositional Monotonicity is supported.
Given D1 |=VS−NAIVE Q , D = D1⊕ D2
⇒ D1+ ∩ Q+ 6= ∅, D = D1⊕ D2
⇒ (∃ti)(ti ∈ D1+ ∧ ti ∈ Q+), and
by the definition of composition, D = D1⊕ D2⇔ D+ = D1+ ∪ D2+

⇒ ti ∈ D+ and ti ∈ Q+

⇒ D+ ∩ Q+ 6= ∅
... D1⊕ D2 |=VS−NAIVE Q .

—RM: Right Compositional Monotonicity is supported.
Given D |=VS−NAIVE Q1, Q = Q1⊕ Q2
⇒ D+ ∩ Q1 6= ∅ and Q = Q1⊕ Q2
⇒ (∃ti)(ti ∈ D+ ∧ ti ∈ Q1+), and by the definition of composition, that is,

Q = Q1⊕ Q2⇔ Q+ = Q1+ ∪ Q2+

⇒ ti ∈ D+ and ti ∈ Q+

⇒ D+ ∩ Q+ 6= ∅
⇒ D |=VS−NAIVE Q1⊕ Q2.

3.2.4 Threshold Vector Space Aboutness (|=VS−T). Let U be the set of all
documents, and T be the set of index terms. Let D ∈U be a document, and Q a
query. Both D and Q are represented as vectors. Based on these, the following
definitions of threshold vector space aboutness are given.

—D |=VS−T Q if and only if cos(D, Q) ≥ ∂, where ∂ ∈ (0, 1]. (Aboutness)
D |6=VS−T Q if and only if cos(D, Q) < ∂

—The mappings of containment, composition, and preclusion are the same as
those in Section 3.2.2.

3.2.5 Inductive Evalution

THEOREM 3. The threshold vector space model supports R, and conditionally
supports C (surface), CWAA, RCM (surface), LM, RM, M, C-FA, and NR. Deep
containment is inapplicable to this model. The postulates GLM, GRM, QLM,
and QRM are inapplicable, as preclusion is inapplicable.

The proofs of LM and RM are as follows.

—LM: Left Compositional Monotonicity is conditionally supported.

7Note that postulate MIX is trivially supported, as LM is supported. The postulate C-FA is trivially
supported, as RM is supported.
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Let |D1+| = f 1, |D2+| = f 2, |Q+| = k, |D1+ ∩ Q+| = c1, |D2+ ∩ Q+| = c2
and |D1+ ∩ D2+| = l .
Then there are |Q+ ∩ (D1⊕ D2)+|= c1+ c2− l and |(D1⊕ D2)+|= f 1 +
f 2− l . Given D1 |=VS−T Q , D = D1⊕ D2
⇒ cos(D1, Q) = c1√

f 1+ k
≥ ∂, D = D1⊕ D2.

This cannot imply cos(D1 ⊕ D2, Q) ≥ ∂. Consider the case where D2+ is
much larger than D1+. cos(D1 ⊕ D2, Q) may be reduced to a very small
value, even less than ∂.
... D1⊕ D2 |=VS−T Q cannot be guaranteed.
To ensure D1⊕ D2 |=VS−T Q , cos(D1⊕ D2, Q) = c1+ c2− l√

( f 1+ f 2− l )+ k
must not be

less than ∂.
Thus, given D1 |=VS−T Q , that is, cos(D1, Q) = c1√

f 1+ k
≥ ∂, the LM postulate

is supported only under the condition of ∂ ≤ c1+ c2− l√
( f 1+ f 2− l )+ k

.

—RM: Right Compositional Monotonicity is conditionally supported.
Let |D+ |= f , |Q1+| = k1, |Q2+| = k2, |D+ ∩Q1+| = c1, |D+ ∩Q2+| = c2 and
|Q1+ ∩ Q2+| = l .
Then there are |D+ ∩ (Q1+ ⊕ Q2+)| = c1+ c2 − l and |(Q1⊕ Q2+)| = k1 +
k2− l . Following the similar proof for LM, we get the conclusion that, given
D |=VS−T Q1, that is, cos(D, Q1)= c1/(

√
f + k1) ≥ ∂, the RM postulate is

supported only under the condition of ∂ ≤ ((c1+ c2− l )/(
√

f + (k1+ k2− l ))).

3.2.6 Remarks. The naı̈ve vector space model is both left and right mono-
tonic. As these properties degrade precision, this model would be imprecise in
practice.

We argue that IR is conservatively monotonic in nature, rather than fully
monotonic or nonmonotonic. Conservative monotonicity means that when new
information is composed on either the left- or right-hand side, the aboutness
relationship should be preserved only under certain guarding conditions. For
example, consider the query expansion process. When a query is expanded us-
ing additional terms, the terms added are not arbitrary. They must be chosen
carefully; that is, conservative monotonicity is at work here. In terms of about-
ness, such models embody properties such as QLM, QRM, and the like without
also supporting LM and RM.

The threshold vector space model only supports R. The monotonic properties
such as LM and RM are conditionally supported depending on the threshold.
This means that by adjusting the threshold value, users could adjust the degree
of nonmonotonicity. In this way, the threshold vector space model mimics con-
servative monotonicity by conditionally supporting LM and RM. For example,
the condition of the threshold vector space model supporting LM can be con-
ceived in the following terms. Consider a set of terms Q (the query) and the set
of terms D (the document). For reasons of clarity, assume that Q ⊂ D. The de-
cision whether D |=VS−T Q holds can be analyzed in terms of LM: starting with
Q , terms are composed in Q until the set D has been constructed. Observe that
as the number of terms in D increases, the cosine normalization will increase.
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There will be a point where the cosine between D and Q will become less than
the threshold value δ. In other words, LM is more likely to be preserved for short
documents, which in a practical sense means that the threshold vector space
model will favor the retrieval of short documents. Observe that the nonmono-
tonicity of the threshold vector space model is not determined by the model
itself, but by external settings. This is undesirable from a theoretical point of
view.

3.3 Probabilistic Model
3.3.1 Background. In the probabilistic model, the probability of relevance

of a document D subjected to a query Q is given by P(rel | D). To simplify, D is
assumed to be a vector-valued random variable (t1, t2, . . . , tn), and t1, t2, . . . , tn
are assumed to be stochastically independent of each other. P(D) is then given
by:

P (D) = P (D | rel)P (rel)+ P (D | nrel)P (nrel).
P (rel | D) is computed as follows.

P (rel | D) = P (D | rel )P (rel)
P (D) .

P (nrel | D) = P (D | rel)P (rel)
P (D) .

P (D | rel) =∏n
i=i P (ti | rel)ti .

P (D | nrel) =∏n
i=i P (ti | nrel)ti .

ti = 0 if and only if term i is absent in D.
ti = 1 if and only if term i is present in D.
P (rel) and P (nrel) are the priori probabilities of relevance and irrelevance,
respectively.

P (ti | rel) and P (ti | nrel) could be estimated if we have complete information
about the relevant and irrelevant documents in the collection.

The Bayes’ Decision Rule is used to make the decision for or against
relevance: D is relevant if and only if P (rel | D)> P (nrel | D); that is,
P (D | rel)P (rel)> P (D |nrel)P (nrel). This leads to a discriminant function:

g (D) = P (D | rel)P (rel)
P (D |nrel)P (nrel)

= P (rel)
∏n

i=i P (ti | rel)ti

P (nrel)
∏n

i=i P (ti |nrel)t1
.

The document D is retrieved if and only if g (D) > 1.
Note that P(rel)/P(nrel) is constant for a given query and document base, and

is independent of any particular document.

3.3.2 Probabilistic Aboutness (|=PB). Let U be the set of all documents,
and T be the set of index terms. Let D ∈U be a document, and Q a query. D
is represented as a vector of index terms, as described in the last section. The
representation of a query is not specified in the model. In this article we just
assume the representation of Q is the same as that of D. Based on these, the
following definitions of probabilistic aboutness are given.

—The representations of D and Q are the same as those of the vector space
model.
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—D |=PB Q if and only if g (D) > 1. (Aboutness)
D 6|=PB Q if and only if g (D)≤ 1.

—The mappings of containment, composition, and preclusion are the same as
those in Section 3.2.2.

3.3.3 Inductive Evaluation

THEOREM 4. The probabilistic model conditionally supports R, C (surface),
CWAA, RCM (surface), LM, RM, C-FA, M, and NR. Deep containment is in-
applicable to this model. The postulates GLM, GRM, QLM, and QRM are
inapplicable, as preclusion is inapplicable.

The proofs of LM and RM are shown as follows.

—LM is conditionally supported.
Given D1 |=PB Q , D= D1⊕ D2

⇒ g (D1) = P (rel)
∏n

i=1
P (ti | rel)ti

P (nrel)
∏n

t=1
P (ti |nrel)ti

> 1 with respect to Q1, D+ = D1+ ∪ D2+.

Suppose the terms {t j , . . . , tk} in D+ but not in D+

⇒ g (D)= g (D1)×
∏k

i=1
P (ti | rel)∏k

i=1
P (ti |nrel)

.

Whether g (D)> 1 depends on ((
∏k

i= j P (ti | rel))/(
∏k

i= j P (ti |nrel)) . Only if the
new composed terms from D2 have higher probability of occurring in the
relevant set than the irrelevant set, is LM supported (i.e., g (D) > 1).

—RM is conditionally supported.
Given D |=PB Q1

⇒ g (D)= P (rel)
∏n

i=1
P (ti | rel)ti

P (nrel)
∏n

i=1
P (ti |nrel)ti

> 1 with respect to Q1.

With respect to Q1⊕ Q2, however, the above estimations may change. Thus
g (D)> 1 could not be guaranteed any more.
Therefore, with respect to Q1⊕Q2, only when the estimations of the a priori
probability of relevance and the probability of index terms in D occurring
in the relevant set are stronger than those of irrelevance, could g (D)> 1
obtained.

3.3.4 Remarks. The classical probabilistic model conditionally supports R,
LM, and RM. This shows that it is fully nonmonotonic. The nonmonotonicity
is achieved by the estimation of relevance and irrelevance and the probability
of occurrence of index terms in the relevant and irrelevant sets via a training
process. This leads to good performance for the probabilistic model in practice.

The properties supported by the threshold vector space and probabilistic
models are almost the same. These models are generally most effective in prac-
tice. The key here is that LM and RM are conditionally supported (i.e., they
mimic conservative monotonicity). For example, the condition of the probabilis-
tic model supporting RM is that new terms composed in a document must have
higher probability of occurrence in the relevant set than the irrelevant set. This
is consistent with the nature of conservative monotonicity.
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The advantage of the probabilistic model over the threshold vector space
model is that its decision rule is included within the model, whereas the thresh-
old value in the threshold vector space model is not determined by itself. How-
ever, the probabilistic model does not directly deal with the matching between
documents and queries. Instead, as we have shown in the proofs of its proper-
ties, the estimations are conducted on the whole document set with respect to a
query. Moreover, the model itself does not specify the criteria of the estimation.
This means it may vary from one query to another. This explains why the
probabilistic model does not fully support R (i.e., even if a document is identical
to a query, the probabilistic model could not determine that they are relevant).

3.4 Discussion of Extended Boolean and Inference Network Models

A well-known alternative Boolean model is the extended Boolean model [Salton
1988], also called the p-norm model. On the other hand, the inference network
model [Turtle and Croft 1992] is an alternative probabilistic model. Both of
them can simulate from the conventional Boolean model to the inner-product
vector space model by tuning certain parameters between their top and bottom
margins (e.g., 1≤ p≤ ∞ for the extended Boolean model; n ≤ c ≤ ∞ for the
inference network model, where n is the number of parents at a given node
in the inference network). It has been proven by Turtle and Croft [1992] that
when the extended Boolean and inference network models are adjusted to simu-
late Boolean and inner-product vector space models, respectively, they produce
the same results. They are similar to each other when they produce the inter-
mediate systems between Boolean and inner-product vector space models for
1 < p < ∞ and n < c < ∞, respectively. For this reason, we only give the de-
tailed discussion on the extended Boolean model in this article. The inference
network model can be analyzed similarly. Moreover, the treatment of this model
is a bit different from the others. We focus on showing how the most important
property, left and right monotonicity, of the extended Boolean model changes
from Boolean to vector space models with the change of p-value.

The extended Boolean model [Salton 1988] provides term weighting and
ranking of the answer set. The similarity between a document and a query
is adjusted by a special parameter, namely, the p-value. Different p-values
lead to different document output values. In this model, a query is the con-
junction or disjunction of n terms, and a document is represented as a vector
D = (t1, t2, . . . , tn). For the purpose of this article, we assume terms in the query
are binary. The similarity between a document and a query is given by

Sim(D, Qand) = 1−
[

(1− t1)p + (1− t2)p + · · · + (1− tn)p

n

]1/p

Sim(D, Qor) =
[

t p
1 + t p

2 + · · · + t p
n

n

]1/p

, where 1 ≤ p ≤ ∞.

When p = ∞, the extended Boolean model simulates normal Boolean logic;
that is, sim(D, Qand)= min(ti) and sim(D, Qor)=max(ti). For p = 1, it behaves
like a simple normalized inner-product vector space model; that is, sim(D,
Qand) = sim(D, Qor) =

∑
ti/n.
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For intermediate p-values, this model generates “soft” Boolean systems
whose properties are between the Boolean and vector space models. We then
show this by analyzing how the monotonicity of the extended Boolean model
changes from a Boolean to an inner-product vector model with respect to the
p-value. We first define the extended Boolean aboutness (|=EB) as below.

D |=EB Q if and only if sim(D, Q) ≥ ∂, where ∂ ∈ (0, 1].

We suppose the query is represented in conjunction normalized form (CNF).
To simplify the analysis, we use the representation of sim (D, Qand) for the
computing of complex queries in CNF, since both sim(D, Qor) and d , are in the
interval [0, 1]. Information composition (⊗) between two queries is modeled
as logical AND, whereas composition between two documents is modeled as
D = D1⊕D2⇔ D+ = D1+ ∪D2+. The left and right monotonicity of extended
Boolean aboutness can then be analyzed.

—Left Monotonicity is supported.
Given D1 |=EB Q
⇒ Sim(D1, Q) = 1− [ (1− t1)p+ (1− t2)p+ ···+ (1− tn)p

n ]1/p ≥ ∂
D = D1⊕ D2⇔ D+ = D+1 ∪ D+2 ; Suppose D = (t ′1, t ′2, . . . , t ′n)
⇒ Sim(D1, Q) = 1− [ (1− t ′1)p+ (1− t ′2)p+ ···+ (1− t ′n)p

n ]1/p ≥ Sim (D1, Q) ≥ ∂
⇒ D |=EB Q .

The above proof shows that the extended Boolean model is left monotonic no
matter what the p-value is. This is consistent with the conventional Boolean
model (see Section 3.1). Compared with the threshold vector space model
using the cosine function (see Section 3.2.5), which conditionally supports
left monotonicity, the similarity function of the extended Boolean model is
normalized using only the query terms, without considering the expansion of
document space. Thus it is not as effective as the cosine vector space system
with respect to left monotonicity. That is, it remains insensitive to document
length.

—Right Monotonicity.
Given D |=EB Q1
⇒ sim(D, Q1) = 1− [ (1− t1)p+ (1− t2)p+ ···+ (1− tn)p

n ]1/p ≥ ∂.
Suppose Q2 is a conjunction of k components.
⇒ sim(D, Q1⊕ Q2) = 1− [ (1− t1)p+ (1− t2)p+ ···+ (1− tn)p+ ···+ (1− tn+ k )p

n+ k ]1/p.
It is not necessary that sim(D, Q1 ⊕ Q2) ≥ ∂. Thus RM is conditionally
supported depending on the values of p and ∂.

Now, let’s consider how the change of p leads to the change of the degree of right
monotonicity of the model. Suppose sim(D, Q1 ⊕ Q2) < ∂. P being increased
implies 1/p being decreased. Due to[

(1− t1)p + (1− t2)p + · · · + (1− tn)p

n

]
≤ 1,[

(1− t1)p + (1− t2)p + · · · + (1− tn)p

n

]1/p
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would be increased and in turn

1−
[

(1− t1)p + (1− t2)p + · · · + (1− tn)p

n

]1/p

should be decreased. Thus, larger p implies larger distance between
sim(D, Q1⊕ Q2) and ∂, that is, a higher degree of right nonmonotonicity. For
p=∞ and binary document terms, the extended Boolean model reduces to the
conventional Boolean model, which has the highest degree of nonmonotonicity
(i.e., right monotonicity is not supported; see Section 3.1. Only if all the new
terms composed in the query are true in the document, can the original about-
ness relation be preserved. This condition is too strict; that is, many documents
even with a high possibility of relevance could not be retrieved. For p= [1,∞),
smooth decrease of p means smooth decrease of the degree of nonmonotonicity.
When p is reduced to 1, the extended Boolean model becomes the inner-product
vector space model, which has the most relaxed condition for conditionally sup-
porting right monotonicity. As a consequence, this model would not be ideal
for supporting query expansion or pseudorelevance feedback. Following this
procedure, the other aboutness properties can be analyzed similarly.

3.5 Summary

In summary, the probabilistic model has potentially the highest degree of pre-
cision, followed by the threshold vector space model, then the Boolean model,
and the naı̈ve vector space model. This conclusion is consistent with the exper-
imental results. The motivation for this judgment lies in the varying degrees to
which they respectively support (or do not support) conservative monotonicity.

4. INDUCTIVE EVALUATION OF LOGICAL IR MODELS

In the past decade, a number of logic-based IR models have been proposed (see
Bruza and Lalmas [1996], Lalmas [1998], and Lalmas and Bruza [1998] for
detailed surveys). These models can be generally classified into three types:
situation theory-based, possible world-based, and other types. In what follows,
we investigate two well-known logic IR models.

In the following analyses, the fact of a document D consisting of informa-
tion carrier i is represented by D→∼ i. For example, guarded left compositional
monotonicity (i.e., Postulate 7) means that if a document consisting of i is about
k (i.e., i |= k), under the guarded condition that i doesn’t preclude j (i± j ),
we can conclude that a document consisting of i ⊕ j is about k (i ⊕ j |= k). In
the following benchmarking exercise, we adopt this interpretation for logical IR
models for reasons of simplicity. For the classical models, we treat the document
and the query as information carriers directly, for there are no term semantic
relationships involved in classical models.

4.1 Situation Theory-Based Model

4.1.1 Background. Van Rijsbergen and Lalmas developed a situation
theory-based model [Lalmas 1996; Van Rijsbergen and Lalmas 1996]. In their
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model, a document and the information it contains are modeled as a situation
and types. A situation s supports the type ϕ, denoted by s |= ϕ, meaning that
ϕ is a part of the information content of the situation. The flow of informa-
tion is modeled by constraints (→). Here we assume ϕ → ϕ. A query is one
type (single type query) or a set of types (complex query); for example, a query
φ = {ϕ, ψ}.

For a situation s and a set of types φ, there are two methods to determine
whether d supports φ. The first is that d supports φ if and only if s supports ϕ
for all types ϕ ∈ φ [Barwise 1989]. Later Lalmas [1996] relaxed the condition
to represent partial relevance: any situation supports φ if it supports at least
one type in φ.

The IR system is to determine to which extent a document d supports the
query φ, denoted by d |= φ. If d |= φ , then the document is relevant to the query
with certainty. Otherwise, constraints from the knowledge set will be used to
find the flow that leads to the information φ. The uncertainty attached to this
flow is used to compute the degree of relevance.

A channel is to link situations. The flow of information circulates in the
channel, where the combination of constraints in sequence (c1; c2) and in paral-
lel (c1‖c2) can be represented. Given two situations s1, s2, s1 | c−→ s2 means that
s1 contains the information about s2 due to the existence of the channel c. A
channel c supports constraint ϕ → ψ , denoted c |= ϕ → ψ , if and only if for all
situations s1 and s2, if s1 |= ϕ, s1 |→ s2, and ϕ→ ψ , then s2 |= ψ . The notation
s1 |= ϕ | c−→ s2 |= ψ stands for c |ϕ→ ψ and s1 |→ s2, which means that s1 |= ϕ
carries the information that s2 |= ψ , due to channel c. If s1 |= ϕ | c−→ s2 |= ψ
and s1 = s2, then c is replaced by a special channel 1, and ϕ logically
entails ψ .

4.1.2 Situation Theory Based Aboutness(|=ST ). Let U be the set of docu-
ments, S be the set of situations, T be the set of types, and C be the set of
channels. Furthermore, let D ∈ U be a document, and Q a query. Then,

—D is modeled as a situation.
—Q is modeled as a set of types
—Given two sets of types φ1 and φ2:

—D′ →∼ φ1 if and only if (∀ϕ ∈ φ1)(D |= ϕ).
—φ1 |=ST φ2 if and only if (∃c ∈ C) (∀D | D→∼ φ1) (∃ϕ ∈φ1) (∃ψ ∈ φ2) (D |=
ϕ | c−→ D′ |= ψ).Note that D′ could be D′ itself; that is, c= 1. A more special

case is D |= ψ | 1−→ D |= ψ . (Aboutness)
—φ1|6=ST φ2 if and only if (/∃c ∈ C) (∀D | D →∼ φ1) (∃ψ ∈φ1) (∃ψ ∈φ2)(D |=
ϕ | c−→ D′ |= ψ).

—φ1 s−→ φ2 if and only if φ1 ⊇ φ2 (Surface Containment)

—φ1 d−→ φ2 if and only if (∃ψ1∈φ1) (∃ψ2∈φ2) (ϕ→ψ). (Deep Containment)
—φ1⊕ φ2⇔ φ1∪ φ2 (Composition)

—A type precludes its negation; for example, (s | s |= �hit, john, x; 1�)
⊥(s | s |= �hit, john, x; 0�). (Prelusion)
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—Suppose the negation of a set of types Q is the set of the negations of every
component type; then Q⊥¬Q .

4.1.3 Inductive Evaluation

THEOREM 5. The situation theory-based IR model supports R, C, LM, RM,
M, C-FA, GLM, GRM, QLM, and QRM.8

The proofs of LM and RM are provided as follows.

—LM: Left Compositional Monotonicity is supported.

Given φ1 |=ST φ2

⇒ (∃ c1 ∈ C) (∀D→∼ D→∼ φ1) (∃ψ1 ∈ φ1) (∃ψ2 ∈ φ2) (D |= ψ ′1 | c1−→ D′ |= ψ2),
φ1⊕ φ3⇔ φ1 ∪ φ3, and {∀D | D→∼ φ1⊕ φ3} ⊆ {∀D | D→∼ φ1}
⇒ (∀D | D→∼ φ1⊕ φ3) (∃ψ1 ∈ φ1⊕ φ3) (∃ψ2 ∈ φ2)(D |= ψ1 c1−→ D′ |= ψ2),
... φ1⊕ φ3 |=ST φ2.

—RM: Right Compositional Monotonicity is supported.

Given φ1 |=ST φ2

⇒ (∃ c1 ∈ C) (∀D | D→∼ φ1) (∃ψ1 ∈ φ1) (∃ψ2 ∈ φ2) (D |= ψ1 | c1−→ D′ |= ψ2), φ1
⊕φ3⇔ φ2 ∪ φ3, and {∀D | D→∼ φ2⊕ φ3} ⊆ {∀D | D→∼ φ2}
⇒ (∀D | D→∼ φ1) (∃ψ1 ∈ φ1) (∃2 ∈ φ2⊕ φ3) (D |= ψ1 c1−→ D′ |= ψ2),
... φ1 |= STφ2⊕ φ3.

4.2 Possible World-Based Model

4.2.1 Background. A number of possible world-based logical IR models
have been proposed. As stated in Lalmas and Bruza [1998] , these systems are
founded on a structure〈W , R〉, where W is the set of worlds and R ⊆ W × W is
the accessibility relation. They can be classified according to the choice made
for the worlds w ∈ W and accessibility relation R. For example, w can be a
document (or its variation) and R is the similarity between two documents
w1 and w2 [Nie 1989, 1992], or w is a term and R is the similarity between
two terms w1 and w2 [Crestani and van Rijsbergen 1995a,b, 1998], or w is the
“retrieval situation” and R is the similarity between two situations w1 and w2
[Nie et al. 1995], and so on.

Most of these systems use a technique called imaging. To obtain P (D→
Q), where the connective→ represents conditional, we can move the probability
from non-D-world to D-world by a shift from the original probability distribu-
tion P of the world w to a new probability distribution PD of its closest world
wD, where D is true. This process is called deriving PD from P by imaging on
D. The truth of D → Q at w will then be measured by the truth of Q at wD.

8Note that postulates MIX, GLM, and QLM are trivially supported, as LM is supported. Postulates
C-FA, GRM, and QRM are trivially supported, as RM is supported.
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To simplify the analysis, let’s suppose that the truth of Q in a world is binary9

and the closest world of a world w is unique.10

P (d → q) can be computed as follows.

P (D→ Q) =
∑
w∈W

P (w)wD(Q) =
∑
w∈W

PD(w)w(Q) (1)∑
w

P (w) = 1 (2)

w(Q) =
{

1, if Q is true in w
0, otherwise

(3)

PD(w) =
∑
w∈W

P (w′)I (w, w′) (4)

I (w, w′) =
{

1, if w = w
′
D

0, otherwise
(5)

wD is the closest world of w where D is true. (6)

Now we study in detail Crestani and van Rijsbergen’s model which models the
terms as possible worlds to see some properties of the possible world-based
approach. In this model, the term is considered as the vector of documents,
while the document and query are vectors of terms. The accessibility relations
between terms are estimated by the cooccurrence of terms. P (D→ Q) can be
computed as

P (D→ Q) =
∑
t∈T

P (t)tD(Q) =
∑
t∈T

PD(t)t(Q) (7)∑
t∈T

P (t) = 1 (8)

t(Q) =
{

1, if t occurs in Q
0, otherwise

(9)

PD(t) =
∑
t∈T

P (t ′)I (t, t ′) (10)

I (t, t ′) =
{

1, if t = t
′
D

0, otherwise
(11)

tD is the closest term of t where d is true (tD occurs in D). (12)

Generally, D is deemed relevant to Q when P (D→ Q) is greater than a thresh-
old value, for example, a positive real number ∂. Similar to the vector space
model (see Section 3.3.2), the simplest case is where at least one term occurs
in both D and Q , or it is also the closest term of some other terms occurring in
D and Q . This case is referred to as the naı̈ve possible world-based model and
the general case as the threshold possible world-based model.

9Actually, it can be multivalued in an interval.
10There is also an approach called general logical imaging that does not rely on this assumption.
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4.2.2 Naı̈ve Possible World Aboutness Based on Crestani and Van
Rijsbergen’s Model (|=NAIVE−PW−CV). Let U be the set of all the documents and
T be the set of all the index terms. Furthermore, let D ∈ U be a document, Q
be a query, and t be a term. The aboutness in the naı̈ve possible world-based
models is defined as follows.

—D and Q are sets of terms
—D |=NAIVE−PW−CV Q if and only if P (D→ Q) > 0 (Aboutness)
—D 6|=NAIVE−PW−CV Q if and only if P (D→ Q) = 0 (Surface containment)
—D→ Q if and only if D ⊇ Q
—Q1→ Q2 if and only if Q1 ⊇ Q2
—t1→ t2 if and only if t1 is the closest term of t2 (Deep containment)
—D1⊕ D2⇔ D1 ∪ D2 (Composition)
—Q1⊕ Q2⇔ Q1 ∪ Q2
—Preclusion is foreign to this model.

4.2.3 Inductive Evaluation

THEOREM 6. The naı̈ve possible world-based model supports R, C (surface),
LM, RM, M, and C-FA.11 Postulates GLM, GRM, QLM, and QRM are inappli-
cable as preclusion is inapplicable.

Proofs of LM and RM are given as follows.

—LM: Left Compositional Monotonicity is supported.

Given D1 |=NAIVE−PW−CV Q , and D = D1⊕ D2

⇒ P (D1→ Q)−
∑

t
PD1(t)t(Q) > 0, D1⊕ D2 = D1 ∪ D2

⇒ At least one term ti is the closest term of some terms where
D1 is true and ti ∈ Q , and D1⊕ D2 = D1 ∪ D2
⇒ ti is also true in D1⊕ D2, and ti ∈ Q

⇒ P (D1⊕ D2→ Q) =
∑

t
PD1⊕D2(t)t(Q) > 0,

... D1⊕ D2 |=NAIVE−PW−CV Q .

—RM: Right Compositional Monotonicity is supported.

Given D |=NAIVE−PW−CV Q1, and Q = Q1⊕ Q2

⇒ P (D→ Q1)−
∑

t
PD(t)t(Q1) > 0, and Q = Q1⊕ Q2 = Q1 ∪ Q2,

⇒ (∃ti ∈ Q1)(∃t ′t ∈ T )(I(ti, t
′
t = 1) and ti ∈ Q

⇒ P (D→ Q1⊕ Q2) =
∑

t
PD(t)t(Q1⊕ Q2) > 0,

... D |=NAIVE−PW−CV Q1⊕ Q2.

11Note that postulates MIX is trivially supported, as LM is supported. Postulate C- FA is trivially
supported, as RM is supported.
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4.2.4 Threshold Possible World Aboutness Based on Crestani and van
Rijsbergen’s Model (|=T−PW−CV). Let U be the set of all documents and T be
the set of all index terms. Furthermore, let D ∈U be a document, Q be a query,
and t be a term. The aboutness in this model is then defined as follows.

—D and Q are sets of terms
—D |=T−PW−CV Q if and only if P (D→ Q) ≥ ∂,

where ∂ is a positive real number in the interval (0, 1] (Aboutness)
—D |6=T−PW−CV Q if and only if P (D→ Q) < ∂

—The mappings of containment, composition, and preclusion are same as those
in Section 4.3.2.

4.2.5 Inductive Evaluation

THEOREM 7. The threshold possible world-based model supports R, LM, RM,
M, C-FA, and conditionally supports C, CWAA, RCM, and NR. Postulates GLM,
GRM, QLM, and QRM are inapplicable as preclusion is inapplicable.

Proofs of LM and RM are given as follows.

—LM: Left Compositional Monotonicity is supported.
Given D1 |=T−PW−CV Q , and D = D1⊕ D2

⇒ P (D1→ Q) =
∑

t
PD1(t)t(Q) ≥ ∂, D1⊕ D2 = D1 ∪ D2

⇒ The number of index terms that are the closest terms of certain terms
where D1⊕D2 is true must be not less than that of index terms that are the
closest terms of certain terms where D1 is true. This implies that PD1⊕D2(t) ≥
PD1(t) .

⇒ P (D1⊕ D2→ Q) =
∑

t
PD1⊕D2(t)t(Q) ≥

∑
t

PD1(t)t(Q) ≥ ∂,

... D1⊕ D2 |=T−PW−CV Q .
—RM: Right Compositional Monotonicity is supported.

Given D |=T−PW−CV Q1, and Q = Q1⊕ Q2

⇒ P (D→ Q1) =
∑

t
PD(t)t(Q1) ≥ ∂ and Q = Q1⊕ Q2 = Q1 ∪ Q2

(i.e.,Q1 ⊆ Q and Q2 ⊆ Q),

⇒ P (D→ Q) =
∑

t
PD(t)t(Q1⊕ Q2) ≥

∑
t

PD(t)t(Q1)

⇒ P (D→ Q1⊕ Q2) =
∑

t
PD(t)t(Q1⊕ Q2) ≥ ∂,

... D |=T−PW−CV Q1⊕ Q2.

4.3 Discussion

Deep containment is irrelevant to classical models, unless they are augmented
by thesauri and the like from which deep containment relationships like
penguin → bird can be extracted. Logical models, by their very nature, can
directly handle deep containment relationships. This means logical models sup-
port information transformation, for example, logical imaging in the possible
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world models. This is a major advantage of logical models. Moreover, they pro-
vide stronger expressive power; for example, concepts such as situation, type
and channel, and so on in a situation theory-based model make it more flexible.

The properties of an IR model are largely determined by the matching func-
tion it supports. Two classes of matching functions are widely used: exact match
and overlapping (naı̈ve and nonzero threshold). The Boolean model is an exam-
ple of an exact match model, which requires that all the information of the
query must be contained in or can be transformed to the information of the
document. The naı̈ve vector space model and naı̈ve possible world-based model
have similar properties (except that deep containment is applicable to the pos-
sible world-based model only) due to their simple overlapping retrieval mech-
anism (i.e., a document is judged to be relevant if it shares at least one term
with the query). Compared with the Boolean model, the naı̈ve vector space and
the naı̈ve possible world-based models support Left and Right Compositional
Monotonicity, which causes imprecision. The Boolean model supports Right
Containment Monotonicity, which promotes recall, at the expense of precision.
They also support the Negation Rationale, which can improve precision. For
the naı̈ve vector space- and possible world-based models, Right Containment
Monotonicity and Negation Rationale are not supported. In summary, it is evi-
dent that the Boolean model is more effective than the naı̈ve vector space- and
the naı̈ve possible world-based models.

The naı̈ve possible world model uses imaging (i.e., imaging from non-D world
to D-world) besides simple overlapping. Even though there may exist a contain-
ment relation between a term t1 in the document and another term t2 in the
query, if t1 is not shared by the document and the query, then this transfor-
mation from t2 to t1 is ineffective to establish the relevance. This explains
why the naı̈ve possible world model does not support Containment (deep). The
mechanics of imaging is dependent on a notion of similarity between worlds.
Experimental evidence shows a relation between retrieval performance and
the way in which the relationship between worlds is defined [Crestani and Van
Rijsbergen 1998]. As the underlying framework for inductive evaluation pre-
sented in this article does not explicitly support a concept of similarity, the
mapping of the possible world-based model into the inductive framework is
incomplete. More is said about this point in the conclusions.

The threshold possible world model is both left and right monotonic. As a
consequence there are some grounds to conclude that this model would be im-
precise in practice, and also be insensitive to document length. As mentioned
in the previous paragraph, retrieval performance depends on how the similar-
ity between worlds is defined. As both LM and RM are supported, it can be
hypothesized that the baseline performance for the threshold possible world
model would be similar to the naı̈ve overlap model. More sophisticated simi-
larity metrics between worlds would improve performance above this baseline.
Crestani and Van Rijsbergen allude to this point as follows: “. . . it is possible to
obtain higher levels of retrieval effectiveness by taking into consideration the
similarity between the objects involved in the transfer of probability. However,
the similarity information should not be used too drastically since similarity is
often based on cooccurrence and such a source of similarity information is itself
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Table I. Summary of Evaluation Resultsa

Naı̈ve Threshold Situation Naı̈ve Threshold
Model Vector Vector Probabilistic Theory- Possible Possible
Postulates Boolean Space Space Model Based World World
R

√ √ √
CS

√ √ √

C (Surface)
√ √

CS CS
√ √

CS
C (Deep) NA NA NA NA

√ × CS
RCM (Surface)

√ × CS CS × × CS
RCM (Deep) NA NA NA NA × × CS
CWAA

√ × CS CS × × CS
LM

√ √
CS CS

√ √ √

RM × √
CS CS

√ √ √

M
√ √

CS CS
√ √ √

C-FA
√ √

CS CS
√ √ √

GLM
√

NA NA NA
√

NA NA
GRM × NA NA NA

√
NA NA

QLM
√

NA NA NA
√

NA NA
QRM × NA NA NA

√
NA NA

NR
√ × CS CS × × CS

aNA means not applicable, CS means conditionally support, √ means support, and × means not supported.

uncertain” [Crestani and Van Rijsbergen 1998]. When the threshold possible
world model judges a document D relevant to the query Q, this implies that D
shares a number of terms with Q or a number of terms can be transformed to
the shared terms so that P (D→ Q) is not less than the threshold ∂. The expan-
sion of D or Q can only increase P (D→ Q). This judgment is not true for the
threshold vector space model, for after the expansion of D (or Q), the increase
of the space of D (or Q) (i.e., the number of terms in D and Q) may be much
more than the increase of the shared terms. Thus the degree of overlapping may
be decreased.

The threshold possible world model and situation theory using Lalmas’ re-
laxed condition support LM and RM. This suggests that these models would be
less precise than probabilistic and threshold vector space models. This in turn
reflects the likely possibility that despite their previously mentioned expres-
sive power, this power does not necessarily translate into precision. The scant
experimental evidence available bears this out [Crestani et al. 1995].

5. RESULTS SUMMARY AND CONCLUSIONS

5.1 Result Summary

Table I presents the results.

5.2 Conclusion

The functional benchmarking exercise presented in this article indicates that
functional benchmarking is both feasible and useful. It has been used to ana-
lyze and compare the functionality of various classical and logical IR models.
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Through functional benchmarking, some phenomena encountered in experi-
mental IR research can be explained from a theoretical point of view using
a symbolic perspective. The theoretical analysis could in turn help us better
understand IR and provide guidelines to investigate more effective IR models.

A major point to be drawn is that IR is conservatively monotonic in nature. It
is important that conservatively monotonic models be studied and developed,
as these would help achieve a better understanding of the tradeoff between
precision and recall. The postulates GLM, GRM, QLM, QRM, and so on guar-
antee the conservatively monotonic properties, but they are foreign to some
models. Even in those models, which support some of the conservatively mono-
tonic properties, preclusion is only based on the assumption that an information
carrier precludes its negation. Moreover, GLM, QLM, and MIX are the special
cases of LM, and GRM, QRM, and C-FA are the special cases of RM. As such, if a
model supports LM, GLM is vacuously supported. Therefore a model supporting
conservative monotonicity should embody conservatively monotonic properties
without supporting LM and RM. The probabilistic model and threshold vec-
tor space model show good performance in practice as they mimic conservative
monotonicity.

Current logical IR models have the advantage of modeling information trans-
formation and their expressive power. However, they are still insufficient to
model conservative monotonicity. A primary reason is that important concepts,
such as (deep and surface) containment, information preclusion, and the like,
upon which conservative monotonicity is based, are not sufficiently modeled.
For example, semantics of information preclusion is not explicitly defined in
current logical models. We just simply assume that an information carrier pre-
cludes its negation during the benchmarking. It is interesting to show that if
we add some kind of semantics of preclusion to the logical IR models, the con-
servative monotonicity could be partially realized. For example, we could add
the following definition to the model.

Preclusion:
Given two types ϕ1 and ϕ2, ϕ1 ⊥ ϕ2, s1 |= ϕ1 and s2 |= ϕ2, there does not exist
any channel between s1 and s2.
The Left composition monotonicity (LM) is no longer supported:
Given φ1 |=ST φ2

⇒ (∃c1 ∈ C)(∀D | D→∼ φ1)(∃ψ1 ∈ φ1)(∃ψ2 ∈ φ2) (D |=ψ1 | c1−→ D′ |=ψ2),
φ1⊕ φ3⇔ φ1 ∪ φ3.

Assume LM is supported; that is, (∀D | D→∼ φ1⊕ φ3) (∃ψ1 ∈ φ1⊕ φ3) (∃ψ2 ∈
φ2) (D |= ψ1 | c1−→ D′ |=ψ2).
Consider the case of φ2 ⊥ φ3. This implies for D |= φ3 and D′ |= φ2, there does
not exist a channel between D and D′. This contradicts the above assumption,
because {∀D | D→∼ φ1⊕ φ3} ⊆ {∀D | D |= φ3},
... it is not necessary that φ1⊕ φ2 |=ST φ2.

On the other hand, RM is not supported for the similar reason of LM. How-
ever, by applying the conservative forms of monotonicity, QLM and QRM, with
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the qualifying nonpreclusion conditions, the above-like counterexample will no
longer exist.

The above definition of preclusion is simply for the purposes of illustration. It is
true that current IR systems are not explicitly defined in terms of concepts such
as preclusion, information containment, and so on. However, such informational
concepts are in the background. Preclusion relationships can be derived via rel-
evance feedback [Amati and Georgatos 1996; Bruza and Van Linder 1998]. For
restricted domains, information containment relationships can be derived from
ontologies and the like. For example, we have been investigating the automatic
extraction of deep containment relationships based on Barwise and Seligman’s
[1997] theory of information flow [Bruza and Song 2001; Song and Bruza 2001].
When language processing tools have advanced further, the concepts under the
aboutness theory could be applied to IR more easily and more directly. More
sensitive IR systems would then result, in particular those that are conser-
vatively monotonic with respect to composition. Therefore more investigations
about how to achieve conservative monotonicity in current logical IR models
are necessary.

Finally, we reflect on the strengths and weaknesses of the inductive theory
of information retrieval evaluation. The strengths are summarized below.

Enhanced Perspective. Matching functions can be characterized qualita-
tively in terms of aboutness properties that are, or are not, implied by the
matching function in question. It may not be obvious what the implications are
of a given numeric formulation of a matching function. The inductive analysis
allows the teasing out of some of these implications. By way of illustration, mod-
els based on overlap may imply monotonicity (left or right), which is precision
degrading. In addition, inductive analysis allows one to compute under what
conditions a particular aboutness property is supported. It has been argued
that a conservatively monotonic aboutness relationship promotes effective re-
trieval. The analysis in this article revealed that although both the threshold
vector space and probabilistic models mimic conservative monotonicity, the fun-
daments of this support are very different: the thresholded vector space model
support for conservative monotonicity depends on overlap between document
and query terms modulo the size of the document. Support for conservative
monotonicity in the probabilistic model depends on whether the terms being
added have a high enough probability of occurring in relevant documents. From
an intuitive point of view, the latter condition would seem a more sound basis
for support because it is directly tied to relevance.

Transparency. One may disagree with a given functional benchmark (as
represented by a set of aboutness properties), or with how a given matching
function has been mapped into the inductive framework; however, the assump-
tions made have been explicitly stated. This differs from some experimental
studies where the underlying assumptions (e.g., the import of certain constants)
are not, or are insufficiently, motivated.

New Insights. The use of an abstract framework allows new insights to be
gleaned. Inductive evaluation has highlighted the import of monotonicity in
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retrieval functions, and its effect on retrieval performance. Designers of new
matching functions should provide functions that are conservatively monotonic
with respect to the composition of information. More sensitive IR systems
would then result. The lack of such systems currently can be attributed in part
to the inability to effectively “operationalize” information preclusion. Most
common IR models are either monotonic or nonmonotonic; another class of IR
models, namely, those that are explicitly conservatively monotonic is missing.
For this reason, the inductive analyses reported in this article revealed no
distinctions based on conservatively monotonic rules such as MIX and CF-A.
Conservatively monotonic models are interesting for purposes of producing a
symbolic inference foundation to query expansion and perhaps even relevance
feedback.

The weaknesses of an inductive theory for evaluation are as follows.

Difficulty in Dealing with Weights. Much of the subtlety of IR models re-
mains buried in different weighting schemes. Due to its symbolic nature, the
inductive approach can abstract “too much,” thereby losing sensitivity in the
final analysis. For example, the nuances of document length normalization
[Singhal et al. 1996], term independence assumptions, and probabilistic weight-
ing schemes are difficult, if not impossible, to map faithfully into a symbolic
inductive framework.

Difficulties with Mapping. For an arbitrary model, it may not be obvious
how to map the model into an inductive framework. This is particularly true
for heavily numeric models such as probabilistic ones. It is often the case that
such models do not support many symbolic properties—they are like black holes
defying analysis [Bruza et al. 2000a]. However, analyzing the conditions under
which given properties are supported allows us to “peek at the edges of the
black hole.”

Incompleteness of Framework. In order to pursue functional benchmarking,
a sufficiently expressive framework is necessary in order to represent salient
aspects of the model in question. This is an issue of completeness. In the in-
ductive analysis of the possible world-based models presented in this article,
we have seen that the notion of similarity inherent to these models cannot
be directly translated into the underlying inductive framework. This suggests
that the framework presented in this article should be extended. One could
also argue that not all salient aspects of aboutness have been captured by the
properties used for the benchmark. These are not criticisms of inductive evalu-
ation, but of the expressiveness of the underlying informational framework, in
this case information fields.

It is noteworthy that conventional experimental IR evaluation approaches
are reasonably solid but sometimes fail to address deeper issues. Functional
benchmarking is a framework and methodology that can help fill this gap. It is
not intended to replace the former, but to complement it.
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APPENDIX

A. List of Notations

Information carrier (IC)
Information composition (⊕)
Information containment (→)
Surface containment ( s−→)
Deep containment ( d−→)
Information preclusion (⊥)
Aboutness (|=)
Nonaboutness (|6=)
A document D (or a query Q) consisting of information carrier i(D→∼ i or
Q →∼ i)
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