798 research outputs found

    Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons

    Get PDF
    Recent studies have begun to focus on the signals that regulate axonal protein synthesis and the functional significance of localized protein synthesis. However, identification of proteins that are synthesized in mammalian axons has been mainly based on predictions. Here,weusedaxonspurifiedfromculturesofinjury-conditionedadultdorsalrootganglion(DRG)neuronsandproteomicsmethodology to identify axonally synthesized proteins. Reverse transcription (RT)-PCR from axonal preparations was used to confirm that the mRNA for each identified protein extended into the DRG axons. Proteins and the encoding mRNAs for the cytoskeletal proteins �-actin, peripherin, vimentin, �-tropomyosin 3, and cofilin 1 were present in the axonal preparations. In addition to the cytoskeletal elements, several heat shock proteins (HSP27, HSP60, HSP70, grp75, �B crystallin), resident endoplasmic reticulum (ER) proteins (calreticulin, grp78/BiP, ERp29), proteins associated with neurodegenerative diseases (ubiquitin C-terminal hydrolase L1, rat ortholog of human DJ-1/Park7, �-synuclein, superoxide dismutase 1), anti-oxidant proteins (peroxiredoxins 1 and 6), and metabolic proteins (e.g., phosphoglycerate kinase 1 (PGK 1), � enolase, aldolase C/Zebrin II) were included among the axonally synthesized proteins. Detection of the mRNAs encoding each of the axonally synthesized proteins identified by mass spectrometry in the axonal compartment indicates that th

    The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?

    Get PDF
    Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was a complex region containing current helicity flux of opposite signs. The main positive sunspots were dominated by negative helicity fields, while positive helicity patches persisted both inside and around the main positive sunspots. Based on a comparison of two days of deduced current helicity density, pronounced changes were noticed which were associated with the occurrence of an X10 flare that peaked at 20:49 UT, 2003 October 29. The average current helicity density (negative) of the main sunspots decreased significantly by about 50. Accordingly, the helicity densities of counter-helical patches (positive) were also found to decay by the same proportion or more. In addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100 keV energy range. The cores of these two HXR footpoints were adjacent to the positions of two patches with positive current helicity which disappeared after the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted from reconnection between magnetic flux tubes having opposite current helicity. Finally, the global decrease of current helicity in AR 10486 by ~50% can be understood as the helicity launched away by the halo coronal mass ejection (CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres

    Emergence of Skyrme crystal in Gross-Neveu and 't Hooft models at finite density

    Get PDF
    We study two-dimensional, large NN field theoretic models (Gross-Neveu model, 't Hooft model) at finite baryon density near the chiral limit. The same mechanism which leads to massless baryons in these models induces a breakdown of translational invariance at any finite density. In the chiral limit baryonic matter is characterized by a spatially varying chiral angle with a wave number depending only on the density. For small bare quark masses a sine-Gordon kink chain is obtained which may be regarded as simplest realization of the Skyrme crystal for nuclear matter. Characteristic differences between confining and non-confining models are pointed out.Comment: 27 pages, 11 figures, added reference, corrected sig

    Multifunctional metal matrix composites with embedded printed electrical materials fabricated by Ultrasonic Additive Manufacturing

    Get PDF
    This work proposes a new method for the fabrication of Multifunctional Metal Matrix Composite (MMC) structures featuring embedded printed electrical materials through Ultrasonic Additive Manufacturing (UAM). Printed electrical circuitries combining conductive and insulating materials were directly embedded within the interlaminar region of UAM aluminium matrices to realise previously unachievable multifunctional composites. A specific surface flattening process was developed to eliminate the risk of short circuiting between the metal matrices and printed conductors, and simultaneously reduce the total thickness of the printed circuitry. This acted to improve the integrity of the UAM MMC’s and their resultant mechanical strength. The functionality of embedded printed circuitries was examined via four-point probe measurement. DualBeam Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) milling were used to investigate the microstructures of conductive materials to characterize the effect of UAM embedding energy whilst peel testing was used to quantify mechanical strength of MMC structures in combination with optical microscopy. Through this process, fully functioning MMC structures featuring embedded insulating and conductive materials were realised whilst still maintaining high peel resistances of ca. 70 N and linear weld densities of ca. 90%

    Sensitivity of the Mott Transition to Non-cubic Splitting of the Orbital Degeneracy: Application to NH3 K3C60

    Full text link
    Within dynamical mean-field theory, we study the metal-insulator transition of a twofold orbitally degenerate Hubbard model as a function of a splitting \Delta of the degeneracy. The phase diagram in the U-\Delta plane exhibits two-band and one-band metals, as well as the Mott insulator. The correlated two-band metal is easily driven to the insulator state by a strikingly weak splitting \Delta << W of the order of the Kondo-peak width zW, where z << 1 is the metal quasiparticle weight. The possible relevance of this result to the insulator-metal transition in the orthorhombic expanded fulleride NH3 K3C60 is discussed.Comment: revtex, 15 pages including 6 ps figures. Submitted to Phys. Rev.

    OI 630.0-nm and N2 1PG Emissions in Pulsating Aurora Events Observed by an Optical Spectrograph at Tromsø, Norway

    Get PDF
    We performed observations of pulsating aurora (PsA) with an optical spectrograph at Tromsø, Norway, during wintertime in 2016–2017. The data analysis of multiple PsA events revealed the PsA spectra for the first time. As the results, the OI 630.0-nm emissions and the N2 1PG emissions were found in the both spectra during brighter (ON) and darker (OFF) phases in the PsA events. The spectra of pulsations were derived as difference spectra between the ON and OFF spectra. From the obtained spectra of pulsations, it is found that dominant pulsations at 630.0 nm were coming from the N2 1PG (10,7) band, and there were less or minor contributions of the OI 630.0 nm to pulsations at 630.0 nm

    Hamiltonian Study of Improved U(1U(1 Lattice Gauge Theory in Three Dimensions

    Full text link
    A comprehensive analysis of the Symanzik improved anisotropic three-dimensional U(1) lattice gauge theory in the Hamiltonian limit is made. Monte Carlo techniques are used to obtain numerical results for the static potential, ratio of the renormalized and bare anisotropies, the string tension, lowest glueball masses and the mass ratio. Evidence that rotational symmetry is established more accurately for the Symanzik improved anisotropic action is presented. The discretization errors in the static potential and the renormalization of the bare anisotropy are found to be only a few percent compared to errors of about 20-25% for the unimproved gauge action. Evidence of scaling in the string tension, antisymmetric mass gap and the mass ratio is observed in the weak coupling region and the behaviour is tested against analytic and numerical results obtained in various other Hamiltonian studies of the theory. We find that more accurate determination of the scaling coefficients of the string tension and the antisymmetric mass gap has been achieved, and the agreement with various other Hamiltonian studies of the theory is excellent. The improved action is found to give faster convergence to the continuum limit. Very clear evidence is obtained that in the continuum limit the glueball ratio MS/MAM_{S}/M_{A} approaches exactly 2, as expected in a theory of free, massive bosons.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Danggui Buxue Tang – A Chinese herbal decoction activates the phosphorylations of extracellular signal-regulated kinase and estrogen receptor α in cultured MCF-7 cells

    Get PDF
    AbstractDanggui Buxue Tang (DBT), a Chinese herbal decoction used to treat ailments in women, contains Radix Astragali (Huangqi; RA) and Radix Angelicae Sinensis (Danggui; RAS). The weight ratio of RA to RAS used in DBT must be 5:1 as stipulated as early as AD 1247; however, DBT’s mechanism of action has never been described. Here, the estrogenic effects of DBT were investigated by determining the phosphorylations of estrogen receptor α (ERα) and extracellular signal-regulated kinase 1/2 (Erk1/2) in cultured MCF-7 cells. The application of DBT triggered the phosphorylation of ERα and Erk1/2 in a time-dependent manner. In contrast to the effect of estrogen, DBT triggered ERα phosphorylation at both S118 and S167. This DBT-specific phosphorylation was not triggered by an extract of one of the individual herbs, or by mixing the extracts of RA and RAS. DBT-induced downstream signals are described here. These signals suggest the uniqueness of this Chinese herbal decoction that requires a well-defined formulation
    corecore