289 research outputs found

    Lateral transport of thermal capillary waves

    Full text link
    We demonstrate that collective motion of interfacial fluctuations can occur at the interface between two coexisting thermodynamic phases. Based on computer simulation results for driven diffusive Ising and Blume-Capel models, we conjecture that the thermal capillary waves at a planar interface travel along the interface if the lateral order parameter current j_op(y) is an odd function of the distance y from the interface and hence possesses opposite directions in the two phases. Such motion does not occur if j_op(y) is an even function of y. A discrete Gaussian interface model with effective dynamics exhibits similiar transport phenomena but with a simpler dispersion relation. These findings open up avenues for controlled interfacial transport on the nanoscale.Comment: 4 pages, 6 figure

    On the nuclear dependence of the mu-e conversion branching ratio

    Get PDF
    The variation of the coherent branching ratio RμeR_{\mu e} (ratio of the μ−→e−\mu^-\to e^- reaction rate divided by the total muon-capture rate) through the periodic table is studied by using exact muon wave functions. It was found that, by using very heavy nuclei (e.g. \nuc{197}Au, the SINDRUM II target) as μ−→e−\mu^-\to e^- conversion stopping-targets, the above ratio is favored by a factor of about four to five than by using light ones (e.g. \nuc{48}Ti, chosen as PRIME target).Comment: 7 pages, 1 Figure NIM Phys. Res., submitte

    Renormalization of Hamiltonian Field Theory; a non-perturbative and non-unitarity approach

    Get PDF
    Renormalization of Hamiltonian field theory is usually a rather painful algebraic or numerical exercise. By combining a method based on the coupled cluster method, analysed in detail by Suzuki and Okamoto, with a Wilsonian approach to renormalization, we show that a powerful and elegant method exist to solve such problems. The method is in principle non-perturbative, and is not necessarily unitary.Comment: 16 pages, version shortened and improved, references added. To appear in JHE

    Bulks of Al-B-C obtained by reactively spark plasma sintering and impact properties by Split Hopkinson Pressure Bar

    Get PDF
    Mixtures of B4C, α-AlB12 and B powders were reactively spark plasma sintered at 1800 °C. Crystalline and amorphous boron powders were used. Samples were tested for their impact behavior by the Split Hopkinson Pressure Bar method. When the ratio R = B4C/α-AlB12 ≥ 1.3 for a constant B-amount, the major phase in the samples was the orthorhombic AlB24C4, and when R < 1 the amount of AlB24C4 significantly decreased. Predictions that AlB24C4 has the best mechanical impact properties since it is the most compact and close to the ideal cubic packing among the Al-B-C phases containing B12-type icosahedra were partially confirmed. Namely, the highest values of the Vickers hardness (32.4 GPa), dynamic strength (1323 MPa), strain and toughness were determined for the samples with R = 1.3, i.e., for the samples with a high amount of AlB24C4. However, the existence of a maximum, detectable especially in the dynamic strength vs. R, indicated the additional influence of the phases and the composite’s microstructure in the samples. The type of boron does not influence the dependencies of the indicated mechanical parameters with R, but the curves are shifted to slightly higher values for the samples in which amorphous boron was used

    Modified Hagedorn formula including temperature fluctuation - Estimation of temperatures at RHIC experiments -

    Get PDF
    We have systematically estimated the possible temperatures obtained from an analysis of recent data on ptp_t distributions observed at RHIC experiments. Using the fact that observed ptp_t distributions cannot be described by the original Hagedorn formula in the whole range of transverse momenta (in particular above 6 GeV/c), we propose a modified Hagedorn formula including temperature fluctuation. We show that by using it we can fit ptp_t distributions in the whole range and can estimate consistently the relevant temperatures, including their fluctuations.Comment: Some misprints corrected, references updated. To be published in Eur. Phys. J. C (2006

    Parity nonconservation in deuteron photoreactions

    Full text link
    We calculate the asymmetries in parity nonconserving deuteron photodisintegration due to circularly polarized photons gamma+d to n+p with the photon laboratory energy ranging from the threshold up to 10 MeV and the radiative capture of thermal polarized neutrons by protons n+p to gamma+d. We use the leading order electromagnetic Hamiltonian neglecting the smaller nuclear exchange currents. Comparative calculations are done by using the Reid93 and Argonne v18 potentials for the strong interaction and the DDH and FCDH "best" values for the weak couplings in a weak one-meson exchange potential. A weak NDelta transition potential is used to incorporate also the Delta(1232)-isobar excitation in the coupled-channels formalism.Comment: 14 pages, 13 figures (18 eps files), LaTeX2

    Broken-Symmetry States in Quantum Hall Superlattices

    Full text link
    We argue that broken-symmetry states with either spatially diagonal or spatially off-diagonal order are likely in the quantum Hall regime, for clean multiple quantum well (MQW) systems with small layer separations. We find that for MQW systems, unlike bilayers, charge order tends to be favored over spontaneous interlayer coherence. We estimate the size of the interlayer tunneling amplitude needed to stabilize superlattice Bloch minibands by comparing the variational energies of interlayer-coherent superlattice miniband states with those of states with charge order and states with no broken symmetries. We predict that when coherent miniband ground states are stable, strong interlayer electronic correlations will strongly enhance the growth-direction tunneling conductance and promote the possibility of Bloch oscillations.Comment: 9 pages LaTeX, 4 figures EPS, to be published in PR

    Isospin influences on particle emission and critical phenomenon in nuclear dissociation

    Full text link
    Features of particle emission and critical point behavior are investigated as functions of the isospin of disassembling sources and temperature at a moderate freeze-out density for medium-size Xe isotopes in the framework of isospin dependent lattice gas model. Multiplicities of emitted light particles, isotopic and isobaric ratios of light particles show the strong dependence on the isospin of the dissociation source, but double ratios of light isotope pairs and the critical temperature determined by the extreme values of some critical observables are insensitive to the isospin of the systems. Values of the power law parameter of cluster mass distribution, mean multiplicity of intermediate mass fragments (IMFIMF), information entropy (HH) and Campi's second moment (S2S_2) also show a minor dependence on the isospin of Xe isotopes at the critical point. In addition, the slopes of the average multiplicites of the neutrons (NnN_n), protons (NpN_p), charged particles (NCPN_{CP}), and IMFs (NimfN_{imf}), slopes of the largest fragment mass number (AmaxA_{max}), and the excitation energy per nucleon of the disassembling source (E∗/AE^*/A) to temperature are investigated as well as variances of the distributions of NnN_n, NpN_p, NCPN_{CP}, NIMFN_{IMF}, AmaxA_{max} and E∗/AE^*/A. It is found that they can be taken as additional judgements to the critical phenomena.Comment: 9 Pages, 8 figure

    Lepton Flavor Non-Conservation

    Full text link
    In the present work we review the most prominent lepton flavor violating processes (\mu \ra e\gamma, \mu \ra 3e, (μ,e)(\mu , e) conversion, M−MˉM-\bar M oscillations etc), in the context of unified gauge theories. Many currently fashionable extensions of the standard model are considered, such as: {\it i)} extensions of the fermion sector (right-handed neutrino); {\it ii)} minimal extensions involving additional Higgs scalars (more than one isodoublets, singly and doubly charged isosinglets, isotriplets with doubly charged members etc.); {\it iii)} supersymmetric or superstring inspired unified models emphasizing the implications of the renormalization group equations in the leptonic sector. Special attention is given to the experimentaly most interesting (μ−e)(\mu - e) conversion in the presence of nuclei. The relevant nuclear aspects of the amplitudes are discussed in a number of fashionable nuclear models. The main features of the relevant experiments are also discussed, and detailed predictions of the above models are compared to the present experimental limits.Comment: (IOA-300/93, review article, 83p, 6 epsf figures , available upon request from [email protected])
    • …
    corecore