104 research outputs found

    Sub-terahertz, microwaves and high energy emissions during the December 6, 2006 flare, at 18:40 UT

    Full text link
    The presence of a solar burst spectral component with flux density increasing with frequency in the sub-terahertz range, spectrally separated from the well-known microwave spectral component, bring new possibilities to explore the flaring physical processes, both observational and theoretical. The solar event of 6 December 2006, starting at about 18:30 UT, exhibited a particularly well-defined double spectral structure, with the sub-THz spectral component detected at 212 and 405 GHz by SST and microwaves (1-18 GHz) observed by the Owens Valley Solar Array (OVSA). Emissions obtained by instruments in satellites are discussed with emphasis to ultra-violet (UV) obtained by the Transition Region And Coronal Explorer (TRACE), soft X-rays from the Geostationary Operational Environmental Satellites (GOES) and X- and gamma-rays from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The sub-THz impulsive component had its closer temporal counterpart only in the higher energy X- and gamma-rays ranges. The spatial positions of the centers of emission at 212 GHz for the first flux enhancement were clearly displaced by more than one arc-minute from positions at the following phases. The observed sub-THz fluxes and burst source plasma parameters were found difficult to be reconciled to a purely thermal emission component. We discuss possible mechanisms to explain the double spectral components at microwaves and in the THz ranges.Comment: Accepted version for publication in Solar Physic

    Mitochondriotropic lanthanide nanorods : implications for multimodal imaging

    Get PDF
    Organelles such as mitochondria, lysosome, and nucleus, are essential for controlling basic cellular operations and metabolism. Because mitochondria play a critical role in energy production and programmed cell death, they act as prime therapeutic targets for various diseases and dysfunctional states. In this study, a multifunctional nanoplatform based on lanthanide upconverting nanorods is developed for concurrent mitochondria-targeted fluorescence imaging and preclinical MRI. This study provides critical insights into the spectral profiles of mitochondria and paves the way to developing novel, multimodal nanoprobes for mitochondria-targeted theranostics

    High-Energy Aspects of Solar Flares: Overview of the Volume

    Full text link
    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23Comment: This is the introductory article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Identification of alpha-enolase as an autoantigen in lung cancer: Its overexpression is associated with clinical outcomes

    Get PDF
    Purpose: Although existence of humoral immunity has been previously shown in malignant pleural effusions, only a limited number of immunogenic tumor-associated antigens (TAA) have been identified and associated with lung cancer. In this study, we intended to identify more TAAs in pleural effusion-derived tumor cells. Experimental Design: Using morphologically normal lung tissues as a control lysate in Western blotting analyses, 54 tumor samples were screened with autologous effusion antibodies. Biochemical purification and mass spectrometric identification of TAAs were done using established effusion tumor cell lines as antigen sources. We identified a p48 antigen as of-enolase (ENO1). Semiquantitative immunohistochemistry was used to evaluate expression status of ENO1 in the tissue samples of 80 patients with non-small cell lung cancer (NSCLC) and then correlated with clinical variables. Results: Using ENO1-specifc antiserum, up-regulation of ENO1 expression in effusion tumor cells from 11 of 17 patients was clearly observed compared with human normal lung primary epithelial and non-cancer-associated effusion cells. Immunohistochemical studies consistently showed high level of ENO1 expression in all the tumors we have examined thus far. Log-rank and Cox's analyses of ENO1 expression status revealed that its expression level in primary tumors was a key factor contributing to overall- and progression-free survivals of patients (P < 0.05). The same result was also obtained in the early stage of NSCLC patients, showing that tumors expressing relatively higher ENO1 level were tightly correlated with poorer survival outcomes. Conclusions: Our data strongly support a prognostic role of ENO1 in determining tumor malignancy of patients with NSCLC

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems

    Transcriptional regulation of the AP-1 and Nrf2 target gene sulfiredoxin

    Get PDF
    “Two-cysteine” peroxiredoxins are antioxidant enzymes that exert a cytoprotective effect in many models of oxidative stress. However, under highly oxidizing conditions they can be inactivated through hyperoxidation of their peroxidatic active site cysteine residue. Sulfiredoxin can reverse this hyperoxidation, thus, reactivating peroxiredoxins. Here we review recent investigations that have shed further light on sulfiredoxin’s role and regulation. Studies have revealed sulfiredoxin to be a dynamically regulated gene whose transcription is induced by a variety of signals and stimuli. Sulfiredoxin expression is regulated by the transcription factor AP-1, which mediates its up-regulation by synaptic activity in neurons, resulting in protection against oxidative stress. Furthermore, sulfiredoxin has been identified as a new member of the family of genes regulated by Nuclear factor erythroid 2-related factor (Nrf2) via a conserved cis-acting antioxidant response element (ARE). As such, sulfiredoxin is likely to contribute to the net antioxidative effect of small molecule activators of Nrf2. As discussed here. the proximal AP-1 site of the sulfiredoxin promoter is embedded within the ARE, as is common with Nrf2 target genes. Other recent studies have shown that sulfiredoxin induction via Nrf2 may form an important part of the protective response to oxidative stress in the lung, preventing peroxiredoxin hyperoxidation and, in certain cases, subsequent degradation. We illustrate here that sulfiredoxin can be rapidly induced in vivo by administration of CDDO-TFEA, a synthetic triterpenoid inducer of endogenous Nrf2, which may offer a way of reversing peroxiredoxin hyperoxidation in vivo following chronic or acute oxidative stress

    Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity

    Get PDF
    The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron’s evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis

    Determination of aniline in silica gel sorbent by one-step in situ microwave-assisted desorption coupled to headspace solid-phase microextraction and GC-FID

    No full text
    Microwave-assisted desorption (MAD) coupled to in situ headspace solid-phase microextraction (HS-SPME) was first proposed as a possible alternative pretreatment of samples in absorbent collected from workplace monitoring. Aniline collected on silica get was investigated. Under microwave irradiation, the aniline was desorbed from silica gel and directly absorbed onto the SPME fiber in the headspace. Having been sampled on the SPME fiber, and desorbed in the GC injection port, aniline was analyzed using a GC-FID system. Parameters that affect the proposed extraction efficiency, including the extraction media and its pH, the microwave irradiation power and the irradiation time as well as desorption parameters of the GC injector, were investigated. Experimental results revealed that the extraction of a 150-mg silica gel sample using a 0.8-ml aqueous solution (pH 12) and a PDMS/DVB fiber under medium-high-powered irradiation (345 W) for 3 min maximized the efficiency of extraction. Desorption of aniline from the SPME fiber was optimal at 230degreesC held for 3 min. The detection limit was 0.09 ng. The proposed method provided a simple, fast, and organic solvent-free procedure to analyze aniline from a silica gel matrix. (C) 2004 Elsevier B.V. All rights reserved
    • 

    corecore