1,787 research outputs found

    Effect of seedbed steaming on Cylindrocladium floridanum, soil microbes and the development of white pine seedlings

    Get PDF
    Dans une pépinière forestière à racines nues, l'appareil Egedal® de traitement à la valeur des plates-bandes, a produit suffisamment de chaleur pour détruire les microsclérotes du Cylindrocladium floridanum à 5 et 10 cm de profondeur. À une autre pépinière, l'inoculum dans le sol ne fut détruit qu'à une profondeur de 5 cm. Le traitement à la vapeur du sol n'a pas affecté les microsclérotes situés à 15 cm. Le traitement a réduit les populations des pseudomonas fluorescents à des niveaux non détectables jusqu'à une profondeur de 20 cm et les populations des espèces de Trichoderma furent réduites significativement dans les 10 cm supérieurs de la plate-bande. Quatre mois après le traitement, la densité des semis de pin blanc semés dans les plates-bandes traitées était significativement plus élevée (P= 0,05), et leur hauteur, leur diamètre au collet, le poids de leurs tiges et celui de leurs racines étaient significativement plus grands (P= 0,05) que ceux des semis témoins provenant des plates-bandes non traitées.The Egedal® bed steamer produced sufficient heat to kill mierosclerotia of Cylindrocladium floridanum at 5 and 10 cm soil depths in one bareroot forest seedling nursery. At a second nursery, the buried inoculum was killed only to a depth of 5 cm. Soil steaming did not affect the mierosclerotia at 15 cm. The steaming reduced populations of fluorescent pseudomonas to undetectable levels to a depth of 20 cm and populations of Trichoderma species were significantly reduced in the upper 10 cm of the seedbed. Density of white pine seedlings sown in the steamed beds was significantly higher (P= 0.05), and height, root collar diameter, shoot weight and root weight were significantly greater (P= 0.05) 4 months after steaming than that of control seedlings sown in unsteamed beds

    Constraining the nuclear equation of state at subsaturation densities

    Get PDF
    Only one third of the nucleons in 208^{208}Pb occupy the saturation density area. Consequently nuclear observables related to average properties of nuclei, such as masses or radii, constrain the equation of state (EOS) not at saturation density but rather around the so-called crossing density, localised close to the mean value of the density of nuclei: ρ\rho\simeq0.11 fm3^{-3}. This provides an explanation for the empirical fact that several EOS quantities calculated with various functionals cross at a density significantly lower than the saturation one. The third derivative M of the energy at the crossing density is constrained by the giant monopole resonance (GMR) measurements in an isotopic chain rather than the incompressibility at saturation density. The GMR measurements provide M=1110 ±\pm 70 MeV (6% uncertainty), whose extrapolation gives K_\infty=230 ±\pm 40 MeV (17% uncertainty).Comment: 4 pages, 4 figure

    Polarization in Medium-Energy Proton-Nucleus Elastic Scattering

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit

    Dynamics of Phase Transitions by Hysteresis Methods I

    Full text link
    In studies of the QCD deconfining phase transition or crossover by means of heavy ion experiments, one ought to be concerned about non-equilibrium effects due to heating and cooling of the system. Motivated by this, we look at hysteresis methods to study the dynamics of phase transitions. Our systems are temperature driven through the phase transition using updating procedures in the Glauber universality class. Hysteresis calculations are presented for a number of observables, including the (internal) energy, properties of Fortuin-Kasteleyn clusters and structure functions. We test the methods for 2d Potts models, which provide a rich collection of phase transitions with a number of rigorously known properties. Comparing with equilibrium configurations we find a scenario where the dynamics of the transition leads to a spinodal decomposition which dominates the statistical properties of the configurations. One may expect an enhancement of low energy gluon production due to spinodal decomposition of the Polyakov loops, if such a scenario is realized by nature.Comment: 12 pages, revised after referee report, to appear in Phys. Rev.

    Perturbative and non-perturbative aspects of the proper time renormalization group

    Full text link
    The renormalization group flow equation obtained by means of a proper time regulator is used to calculate the two loop beta function and anomalous dimension eta of the field for the O(N) symmetric scalar theory. The standard perturbative analysis of the flow equation does not yield the correct results for both beta and eta. We also show that it is still possible to extract the correct beta and eta from the flow equation in a particular limit of the infrared scale. A modification of the derivation of the Exact Renormalization Group flow, which involves a more general class of regulators, to recover the proper time renormalization group flow is analyzed.Comment: 26 pages.Latex.Version accepted for publicatio

    Nucleon Polarizabilities from Deuteron Compton Scattering within a Green's-Function Hybrid Approach

    Full text link
    We examine elastic Compton scattering from the deuteron for photon energies ranging from zero to 100 MeV, using state-of-the-art deuteron wave functions and NN-potentials. Nucleon-nucleon rescattering between emission and absorption of the two photons is treated by Green's functions in order to ensure gauge invariance and the correct Thomson limit. With this Green's-function hybrid approach, we fulfill the low-energy theorem of deuteron Compton scattering and there is no significant dependence on the deuteron wave function used. Concerning the nucleon structure, we use Chiral Effective Field Theory with explicit \Delta(1232) degrees of freedom within the Small Scale Expansion up to leading-one-loop order. Agreement with available data is good at all energies. Our 2-parameter fit to all elastic γd\gamma d data leads to values for the static isoscalar dipole polarizabilities which are in excellent agreement with the isoscalar Baldin sum rule. Taking this value as additional input, we find \alpha_E^s= (11.3+-0.7(stat)+-0.6(Baldin)) x 10^{-4} fm^3 and \beta_M^s = (3.2-+0.7(stat)+-0.6(Baldin)) x 10^{-4} fm^3 and conclude by comparison to the proton numbers that neutron and proton polarizabilities are essentially the same.Comment: 47 pages LaTeX2e with 20 figures in 59 .eps files, using graphicx. Minor modifications; extended discussion of theoretical uncertainties of polarisabilities extraction. Version accepted for publication in EPJ

    Coronagraphic Observations of Fomalhaut at Solar System Scales

    Get PDF
    We report on a search for low mass companions within 10 AU of the star Fomalhaut, using narrowband observations at 4.05 {μμ}m obtained with the Apodizing Phase Plate coronagraph on the VLT/NaCo. Our observations place a model-dependent upper mass limit of 12-20 M jup_{jup} from 4 to 10 AU, covering the semimajor axis search space between interferometric imaging measurements and other direct imaging non-detections. These observations rule out models where the large semimajor axis for the putative candidate companion Fomalhaut b is explained by dynamical scattering from a more massive companion in the inner stellar system, where such giant planets are thought to form.Stars and planetary system

    Entanglement study of the 1D Ising model with Added Dzyaloshinsky-Moriya interaction

    Full text link
    We have studied occurrence of quantum phase transition in the one-dimensional spin-1/2 Ising model with added Dzyaloshinsky-Moriya (DM) interaction from bi- partite and multi-partite entanglement point of view. Using exact numerical solutions, we are able to study such systems up to 24 qubits. The minimum of the entanglement ratio R \equiv \tau 2/\tau 1 < 1, as a novel estimator of QPT, has been used to detect QPT and our calculations have shown that its minimum took place at the critical point. We have also shown both the global-entanglement (GE) and multipartite entanglement (ME) are maximal at the critical point for the Ising chain with added DM interaction. Using matrix product state approach, we have calculated the tangle and concurrence of the model and it is able to capture and confirm our numerical experiment result. Lack of inversion symmetry in the presence of DM interaction stimulated us to study entanglement of three qubits in symmetric and antisymmetric way which brings some surprising results.Comment: 18 pages, 9 figures, submitte

    Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective

    Full text link
    Transport properties of a thermal medium determine how its conserved charge densities (for instance the electric charge, energy or momentum) evolve as a function of time and eventually relax back to their equilibrium values. Here the transport properties of the quark-gluon plasma are reviewed from a theoretical perspective. The latter play a key role in the description of heavy-ion collisions, and are an important ingredient in constraining particle production processes in the early universe. We place particular emphasis on lattice QCD calculations of conserved current correlators. These Euclidean correlators are related by an integral transform to spectral functions, whose small-frequency form determines the transport properties via Kubo formulae. The universal hydrodynamic predictions for the small-frequency pole structure of spectral functions are summarized. The viability of a quasiparticle description implies the presence of additional characteristic features in the spectral functions. These features are in stark contrast with the functional form that is found in strongly coupled plasmas via the gauge/gravity duality. A central goal is therefore to determine which of these dynamical regimes the quark-gluon plasma is qualitatively closer to as a function of temperature. We review the analysis of lattice correlators in relation to transport properties, and tentatively estimate what computational effort is required to make decisive progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag. added end of section 3.4, and one at the end of section 3.2.2; some Refs. added, and some other minor change
    corecore