444 research outputs found

    WASP 1628+10-an EL CVn-type binary with a very low mass stripped red giant star and multiperiodic pulsations

    Get PDF
    The star 1SWASP J162842.31+101416.7 (WASP 1628+10) is one of several EL CVn-type stars recently identified using the Wide Angle Search for Planets (WASP) data base, i.e. an eclipsing binary star in which an A-type dwarf star (WASP 1628+10 A) eclipses the remnant of a disrupted red giant star (WASP 1628+10 B). We have measured the masses, radii and luminosities of the stars in WASP 1628+10 using photometry obtained in three bands (u , g , r ) with the ULTRACAM instrument and medium-resolution spectroscopy. The properties of the remnant are well matched by models for stars in a rarely observed state evolving to higher effective temperatures at nearly constant luminosity prior to becoming a very low mass white dwarf composed almost entirely of helium, i.e. we confirm that WASP 1628+10 B is a precursor of a helium white dwarf (pre-He-WD). WASP 1628+10 A appears to be a normal A2 V star with a mass of 1.36 ± 0.05 M. By fitting models to the spectrum of this star around the Hγ line we find that it has an effective temperature Teff, A = 7500 ± 200 K and a metallicity [Fe/H] = −0.3 ± 0.3. The mass of WASP 1628+10 B is only 0.135 ± 0.02 M. The effective temperature of this pre-He-WD is approximately 9200 K. The ULTRACAM photometry of WASP 1628+10 shows variability at several frequencies around 40 cycles d−1, which is typical for δ Sct-type pulsations often observed in early A-type stars like WASP 1628+10 A. We also observe frequencies near 114 and 129 cycles d−1, much higher than the frequencies normally seen in δ Sct stars. Additional photometry through the primary eclipse will be required to confirm that these higher frequencies are due to pulsations in WASP 1628+10 B. If confirmed, this would be only the second known example of a pre-He-WD showing high-frequency pulsations

    The mass and radius of the M dwarf companion to GD 448

    Get PDF
    We present spectroscopy and photometry of GD 448, a detached white dwarf - M dwarf binary with a period of 2.47 h. We find that the Na I 8200-Å feature is composed of narrow emission lines, owing to irradiation of the M dwarf by the white dwarf, within broad absorption lines that are essentially unaffected by heating. Combined with an improved spectroscopic orbit and gravitational redshift measurement from spectra of the Hα line, we are able to derive masses for the white dwarf and M dwarf directly (0.41 ± 0.01 and 0.096 ± 0.004 M⊙, respectively). We use a simple model of the Ca II emission lines to establish the radius of the M dwarf assuming the emission from its surface to be proportional to the incident flux per unit area from the white dwarf. The radius derived is 0.125 ± 0.020 R⊙. The M dwarf appears to be a normal main-sequence star in terms of its mass and radius, and is less than half the size of its Roche lobe. The thermal time-scale of the M dwarf is much longer than the cooling age of the white dwarf, so we conclude that the M dwarf was unaffected by the common-envelope phase. The anomalous width of the Hα emission from the M dwarf remains to be explained, but the strength of the line may be due to X-ray heating of the M dwarf owing to accretion on to the white dwarf from the M dwarf wind

    Marine benthic flora and fauna of Gourdon Bay and the Dampier Peninsula in the Kimberley region of North-Western Australia

    Get PDF
    Surveys undertaken to characterise the marine benthic habitats along the Dampier Peninsula and further south at Gourdon Bay in the Kimberley region of Western Australia were augmented with epibenthic sled sampling of soft and hard bottom habitats. This paper describes the species collected, their biomass and relative abundance for the main groups of marine macrophytes and invertebrates. Five localities were surveyed; Gourdon Bay, Quondong Point to Coulomb Point, Carnot Bay to Beagle Bay, Perpendicular Head and Packer Island. Sampling was limited to fifteen epibenthic dredge operations from a range of habitat types and was designed to target the most common habitat types and to obtain species identifications of the most important species and those which typified different habitat types. Surveys covered a total of 1,350 m 2 of seabed in depths between 11 and 23m. We identified 415 taxa comprising: 1 seagrass, 43 algae, 52 sponges, 30 ascidians, 10 hydroids, 14 scleractinian corals, 52 other cnidarians, 69 crustaceans, 73 molluscs and 71 echinoderms. Despite the limited nature of the sampling, a significant number of new species, range extensions and new records for Western Australia and Australia were recorded. Within the algae, one range extension (Halimeda cf. cuneata f. digitata not previously recorded in Western Australia) and one possible new species of Areschougia were recorded. Two range extensions were present in the ascidians; the solitary ascidian Polycarpa cf. intonata has previously only been recorded in Queensland and Cnemidocarpa cf. radicosa only in temperate Australian waters. There were several range extensions for the crustacea, for example, the sponge crab, Tumidodromia dormia, has only been recorded in Queensland. One species of holothurian of the genus Phyllophorus could not be identified from the literature available and may represent a new species. Similarly, a small species of the echinoid Gymnechinus could possibly be a new species. The collections of hydroids, hard corals, crinoids and molluscs contained no new species or range extensions. There was difficulty in identification of some groups to species level due to the status of the current taxonomic literature (e.g. Cnidaria, Porifera and ascidians) and there may be a number of new species among the material collected. Among the anthozoa, there is at least one new species of Chromonephthea and potentially 10 range extensions to Western Australia. Sinularia cf. acuta and Chromonephthea curvata are both new records for Australia with both previously recorded in Indonesia only. Among the better known taxa (e.g. molluscs, echinoderms, corals), most of the taxa identified to species level have been recorded to occur throughout north-western Australia, however the diversity recorded in this study is less than other parts of the Kimberley and this is almost certainly a result of the small overall area sampled and the single method of collection utilised. The most important species on soft bottom habitats in terms of biomass was the heart urchin Breynia desorii (up to 326 g.m -2). Sponges were the dominant fauna by biomass (up to 620 g.m -2) on hard bottom habitats and biomass was dominated a by a few large cup and massive sponge species (e.g. Pione velans and two unidentified Spheciospongia). The biomass of other filter feeders, especially ascidians (e.g. Aplidium cf. crateriferum), soft corals (e.g. Chromonephthea spp.), gorgonians (e.g. Junceella fragilis and Dichotella gemmacea) was also high, indicating the importance of these groups in characterising hard bottom habitats. Although low in biomass, crinoids such as Comaster multifidus and Comatula pectinata were abundant in samples that included a high biomass of other filter feeders

    PTF1 J085713+331843, a new post common-envelope binary in the orbital period gap of cataclysmic variables

    Get PDF
    We report the discovery and analysis of PTF1 J085713+331843, a new eclipsing post common-envelope detached white-dwarf red-dwarf binary with a 2.5h orbital period discovered by the Palomar Transient Factory. ULTRACAM multicolour photometry over multiple orbital periods reveals a light curve with a deep flat-bottomed primary eclipse and a strong reflection effect. Phase-resolved spectroscopy shows broad Balmer absorption lines from the DA white dwarf and phase-dependent Balmer emission lines originating on the irradiated side of the red dwarf. The temperature of the DA white dwarf is TWD=25700±400T_\mathrm{WD} = 25700 \pm 400\,K and the spectral type of the red dwarf is M3-5. A combined modelling of the light curve and the radial velocity variations results in a white dwarf mass of MWD=0.610.17+0.18MM_\mathrm{WD} = 0.61^{+0.18}_{-0.17}\, \mathrm{M_{\odot}} and radius of RWD=0.01750.0011+0.0012RR_\mathrm{WD} = 0.0175^{+0.0012}_{-0.0011}\, \mathrm{R_{\odot}}, and a red dwarf mass and radius of MRD=0.190.08+0.10MM_\mathrm{RD} = 0.19^{+0.10}_{-0.08}\, \mathrm{M_{\odot}} and RRD=0.240.04+0.04RR_\mathrm{RD} = 0.24^{+0.04}_{-0.04}\, \mathrm{R_{\odot}}. The system is either a detached cataclysmic variable or has emerged like from the common envelope phase at nearly its current orbital period. In 70\sim70\,Myr, this system will become a cataclysmic variable in the period gap

    Pulsating hot O subdwarfs in ω Centauri: mapping a unique instability strip on the extreme horizontal branch

    Get PDF
    We present the results of an extensive survey for rapid pulsators among Extreme Horizontal Branch (EHB) stars in ω Cen. The observations performed consist of nearly 100 h of time-series photometry for several off-centre fields of the cluster, as well as low-resolution spectroscopy for a partially overlapping sample. We obtained photometry for some 300 EHB stars, for around half of which we are able to recover light curves of sufficient quality to either detect or place meaningful non-detection limits for rapid pulsations. Based on the spectroscopy, we derive reliable values of log g, Teff and log N(He) /N(H) for 38 targets, as well as good estimates of the effective temperature for another nine targets, whose spectra are slightly polluted by a close neighbour in the image. The survey uncovered a total of five rapid variables with multi-periodic oscillations between 85 and 125 s. Spectroscopically, they form a homogeneous group of hydrogen-rich subdwarf O stars clustered between 48 000 and 54 000 K. For each of the variables we are able to measure between two and three significant pulsations believed to constitute independent harmonic oscillations. However, the interpretation of the Fourier spectra is not straightforward due to significant fine structure attributed to strong amplitude variations. In addition to the rapid variables, we found an EHB star with an apparently periodic luminosity variation of ~2700 s, which we tentatively suggest may be caused by ellipsoidal variations in a close binary. Using the overlapping photometry and spectroscopy sample we are able to map an empirical ω Cen instability strip in log g − Teff space. This can be directly compared to the pulsation driving predicted from the Montréal “second-generation” models regularly used to interpret the pulsations in hot B subdwarfs. Extending the parameter range of these models to higher temperatures, we find that the region where p-mode excitation occurs is in fact bifurcated, and the well-known instability strip between 29 000−36 000 K where the rapid subdwarf B pulsators are found is complemented by a second one above 50 000 K in the models. While significant challenges remain at the quantitative level, we believe that the same κ-mechanism that drives the pulsations in hot B subdwarfs is also responsible for the excitation of the rapid oscillations observed in the ω Cen variables. Intriguingly, the ω Cen variables appear to form a unique class. No direct counterparts have so far been found either in the Galactic field, nor in other globular clusters, despite dedicated searches. Conversely, our survey revealed no ω Cen representatives of the rapidly pulsating hot B subdwarfs found among the field population, though their presence cannot be excluded from the limited sample

    SDSS J105754.25+275947.5: a period-bounce eclipsing cataclysmic variable with the lowest-mass donor yet measured

    Get PDF
    We present high-speed, multicolour photometry of the faint, eclipsing cataclysmic variable (CV) SDSS J105754.25+275947.5. The light from this system is dominated by the white dwarf. Nonetheless, averaging many eclipses reveals additional features from the eclipse of the bright spot. This enables the fitting of a parameterised eclipse model to these average light curves, allowing the precise measurement of system parameters. We find a mass ratio of q = 0.0546 ±\pm 0.0020 and inclination i = 85.74 ±\pm 0.21^{\circ}. The white dwarf and donor masses were found to be Mw_{\mathrm{w}} = 0.800 ±\pm 0.015 M_{\odot} and Md_{\mathrm{d}} = 0.0436 ±\pm 0.0020 M_{\odot}, respectively. A temperature Tw_{\mathrm{w}} = 13300 ±\pm 1100 K and distance d = 367 ±\pm 26 pc of the white dwarf were estimated through fitting model atmosphere predictions to multicolour fluxes. The mass of the white dwarf in SDSS 105754.25+275947.5 is close to the average for CV white dwarfs, while the donor has the lowest mass yet measured in an eclipsing CV. A low-mass donor and an orbital period (90.44 min) significantly longer than the period minimum strongly suggest that this is a bona fide period-bounce system, although formation from a white dwarf/brown dwarf binary cannot be ruled out. Very few period-minimum/period-bounce systems with precise system parameters are currently known, and as a consequence the evolution of CVs in this regime is not yet fully understood

    Heavy metals in a light white dwarf: abundances of the metal-rich, extremely low-mass GALEX J1717+6757

    Get PDF
    Using the Hubble Space Telescope, we detail the first abundance analysis enabled by farultraviolet spectroscopy of a low-mass (0.19 M) white dwarf (WD), GALEX J1717+6757, which is in a 5.9-h binary with a fainter, more-massive companion. We see absorption from nine metals, including roughly solar abundances of Ca, Fe, Ti, and P. We detect a significantly sub-solar abundance of C, and put upper limits on N and O that are also markedly sub-solar. Updated diffusion calculations indicate that all metals should settle out of the atmosphere of this 14 900 K, log g = 5.67 WD in the absence of radiative forces in less than 20 yr, orders of magnitude faster than the cooling age of hundreds of Myr. We demonstrate that ongoing accretion of rocky material that is often the cause of atmospheric metals in isolated, more massive WDs is unlikely to explain the observed abundances in GALEX J1717+6757. Using new radiative levitation calculations, we determine that radiative forces can counteract diffusion and support many but not all of the elements present in the atmosphere of this WD; radiative levitation cannot, on its own, explain all of the observed abundance patterns, and additional mechanisms such as rotational mixing may be required. Finally, we detect both primary and secondary eclipses using ULTRACAM high-speed photometry, which we use to constrain the low-mass WD radius and rotation rate as well as update the ephemeris from the discovery observations of this WD+WD binary

    HiPERCAM: A high-speed quintuple-beam CCD camera for the study of rapid variability in the universe

    Get PDF
    HiPERCAM is a high-speed camera for the study of rapid variability in the Universe. The project is funded by a ϵ3.5M European Research Council Advanced Grant. HiPERCAM builds on the success of our previous instrument, ULTRACAM, with very significant improvements in performance thanks to the use of the latest technologies. HiPERCAM will use 4 dichroic beamsplitters to image simultaneously in 5 optical channels covering the u'g'r'I'z' bands. Frame rates of over 1000 per second will be achievable using an ESO CCD controller (NGC), with every frame GPS timestamped. The detectors are custom-made, frame-transfer CCDs from e2v, with 4 low noise (2.5e -) outputs, mounted in small thermoelectrically-cooled heads operated at 180 K, resulting in virtually no dark current. The two reddest CCDs will be deep-depletion devices with anti-etaloning, providing high quantum efficiencies across the red part of the spectrum with no fringing. The instrument will also incorporate scintillation noise correction via the conjugate-plane photometry technique. The opto-mechanical chassis will make use of additive manufacturing techniques in metal to make a light-weight, rigid and temperature-invariant structure. First light is expected on the 4.2m William Herschel Telescope on La Palma in 2017 (on which the field of view will be 10' with a 0.3"/pixel scale), with subsequent use planned on the 10.4m Gran Telescopio Canarias on La Palma (on which the field of view will be 4' with a 0.11"/pixel scale) and the 3.5m New Technology Telescope in Chile

    A 15.7-minAM CVn binary discovered in K2

    Get PDF
    We present the discovery of SDSS J135154.46−064309.0, a short-period variable observed using 30-mincadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 min makes this system the fourth-shortest-period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 min, 16.1121 ± 0.0004 min, and 664.82 ± 0.06 min, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1= 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by Laser Interferometer Space Antenna, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components

    Broad-band spectrophotometry of HAT-P-32 b: search for a scattering signature in the planetary spectrum

    Get PDF
    Multicolour broad-band transit observations offer the opportunity to characterize the atmosphere of an extrasolar planet with small- to medium-sized telescopes. One of the most favourable targets is the hot Jupiter HAT-P-32 b. We combined 21 new transit observations of this planet with 36 previously published light curves for a homogeneous analysis of the broad-band transmission spectrum from the Sloan u′ band to the Sloan z′ band. Our results rule out cloud-free planetary atmosphere models of solar metallicity. Furthermore, a discrepancy at reddest wavelengths to previously published results makes a recent tentative detection of a scattering feature less likely. Instead, the available spectral measurements of HAT-P-32 b favour a completely flat spectrum from the near-UV to the near-IR. A plausible interpretation is a thick cloud cover at high altitudes
    corecore