105 research outputs found

    What factors affect voluntary uptake of community-based health insurance schemes in low- and middle-income countries? A systematic review and meta-analysis

    Get PDF
    Introduction: This research article reports on factors influencing initial voluntary uptake of community-based health insurance (CBHI) schemes in low- and middle-income countries (LMIC), and renewal decisions. Methods: Following PRISMA protocol, we conducted a comprehensive search of academic and gray literature, including academic databases in social science, economics and medical sciences (e.g., Econlit, Global health, Medline, Proquest) and other electronic resources (e.g., Eldis and Google scholar). Search strategies were developed using the thesaurus or index terms (e.g., MeSH) specific to the databases, combined with free text terms related to CBHI or health insurance. Searches were conducted from May 2013 to November 2013 in English, French, German, and Spanish. From the initial search yield of 15,770 hits, 54 relevant studies were retained for analysis of factors influencing enrolment and renewal decisions. The quantitative synthesis (informed by meta-analysis) and the qualitative analysis (informed by thematic synthesis) were compared to gain insight for an overall synthesis of findings/statements. Results: Meta-analysis suggests that enrolments in CBHI were positively associated with household income, education and age of the household head (HHH), household size, female-headed household, married HHH and chronic illness episodes in the household. The thematic synthesis suggests the following factors as enablers for enrolment: (a) knowledge and understanding of insurance and CBHI, (b) quality of healthcare, (c) trust in scheme management. Factors found to be barriers to enrolment include: (a) inappropriate benefits package, (b) cultural beliefs, (c) affordability, (d) distance to healthcare facility, (e) lack of adequate legal and policy frameworks to support CBHI, and (f) stringent rules of some CBHI schemes. HHH education, household size and trust in the scheme management were positively associated with member renewal decisions. Other motivators were: (a) knowledge and understanding of insurance and CBHI, (b) healthcare quality, (c) trust in scheme management, and (d) receipt of an insurance payout the previous year. The barriers to renewal decisions were: (a) stringent rules of some CBHI schemes, (b) inadequate legal and policy frameworks to support CBHI and (c) inappropriate benefits package. Conclusion and Policy Implications: The demand-side factors positively affecting enrolment in CBHI include education, age, female household heads, and the socioeconomic status of households. Moreover, when individuals understand how their CBHI functions they are more likely to enroll and when people have a positive claims experience, they are more likely to renew. A higher prevalence of chronic conditions or the perception that healthcare is of good quality and nearby act as factors enhancing enrolment. The perception that services are distant or deficient leads to lower enrolments. The second insight is that trust in the scheme enables enrolment. Thirdly, clarity about the legal or policy framework acts as a factor influencing enrolments. This is significant, as it points to hitherto unpublished evidence that governments can effectively broaden their outreach to grassroots groups that are excluded from social protection by formulating supportive regulatory and policy provisions even if they cannot fund such schemes in full, by leveraging people's willingness to exercise voluntary and contributory enrolment in a community-based health insurance

    Nanostructured corrosion sensing coatings for aeronautical applications

    Get PDF
    It is critical for the aeronautical industry that the next generation of smart coatings allows the early detection and continuous monitoring of corrosion. Once corrosion is detected, preventive actions can be taken in order to mitigate its costs. Our strategy relies on functional coatings capable of detecting metallic corrosion early on. After appropriate selection of sensing compounds and subsequent loading into nanostructured materials, these are incorporated into coating formulations giving them corrosion sensing functionality. Based on this concept we focused on the compatibility between nanocontainers and coating formulations. Thus, a new sensing coating was investigated using immersion and salt-spray tests, release and leaching studies, viscoelastic properties, curing, thermal stability, hardness, mechanical properties and corrosion resistance. The results embody a new generation of coatings with sensing ability, and have implications for self-healing and anti-fouling coatings as well.publishe

    ConR: An R package to assist large-scale multispecies preliminary conservation assessments using distribution data

    Get PDF
    Published online: 16 Dec 2017The Red List Categories and the accompanying five criteria developed by the International Union for Conservation of Nature (IUCN) provide an authoritative and comprehensive methodology to assess the conservation status of organisms. Red List criterion B, which principally uses distribution data, is the most widely used to assess conservation status, particularly of plant species. No software package has previously been available to perform large-scale multispecies calculations of the three main criterion B parameters [extent of occurrence (EOO), area of occupancy (AOO) and an estimate of the number of locations] and provide preliminary conservation assessments using an automated batch process. We developed ConR, a dedicated R package, as a rapid and efficient tool to conduct large numbers of preliminary assessments, thereby facilitating complete Red List assessment. ConR (1) calculates key geographic range parameters (AOO and EOO) and estimates the number of locations sensu IUCN needed for an assessment under criterion B; (2) uses this information in a batch process to generate preliminary assessments of multiple species; (3) summarize the parameters and preliminary assessments in a spreadsheet; and (4) provides a visualization of the results by generating maps suitable for the submission of full assessments to the IUCN Red List. ConR can be used for any living organism for which reliable georeferenced distribution data are available. As distributional data for taxa become increasingly available via large open access datasets, ConR provides a novel, timely tool to guide and accelerate the work of the conservation and taxonomic communities by enabling practitioners to conduct preliminary assessments simultaneously for hundreds or even thousands of species in an efficient and time-saving way

    Revealing the secrets of African annonaceae : systematics, evolution and biogeography of the syncarpous genera Isolona and Monodora

    Get PDF
    The goal of this PhD project was to study the evolution, systematics and biogeography of two African genera from the pan-tropical Annonaceae family: Isolona and Monodora. Both genera are unique within the family in that the female reproductive parts (or carpels) are fused into a single unit. All other Annonaceae have freely arranged carpels. We investigated the phylogenetic relationships of Isolona and Monodora at the intra-familial and intra-generic levels. In Chapter 2, we explore the influence of priors when using the novel Bayesian based posterior mapping to study the evolution of morphological characters. Up to now, it was unclear if these priors had any influence on the results. Using a family level molecular phylogeny of the Annonaceae, we study the evolution of two morphological characters under different prior values. We show that different prior values will return different results. Thus, inadequate prior values can lead to erroneous conclusions over the evolution of the studied morphological characters. We also indicate a practical way to choose the prior values when using the posterior mapping approach to study morphological character evolution. In Chapter 3, using the posterior mapping approach, we study the evolutionary origins of syncarpy in Annonaceae. The closest relatives of Isolona and Monodora are elucidated. We generate a well resolved phylogeny which included for the first time the majority of African Annonaceae genera. We also study additional morphological and palynological characters relevant to Annonaceae classification in general. Our phylogenetic analyses recover a fully resolved clade comprising twelve endemic African genera, including Isolona and Monodora, which was nested within the so-called long-branch clade. This is the largest and most species-rich clade of African genera identified to date within Annonaceae. Our results indicate that syncarpy arose by fusion of a moderate number of carpels. The alternative hypothesis that syncarpy arose by multiplication of an initial single carpel receives no support. In Chapter 4 we use African Annonaceae as a model family to study the biogeographical aspects of the evolutionary origins of African rain forests. It is generally thought that the large West-Central rain forest blocks was continuous during the Eocene with the now fragmented and smaller forests of East Africa, explaining the strong floristic affinities between both areas. Using dated molecular phylogenies we provide evidence of the recurring break-up and reconnection of this pan-African rain forest during the Oligocene and Miocene. The reconnections allowed for biotic exchange while the break-ups induced speciation enhancing the levels of endemicity, thus providing an explanation for present-day patterns in the distribution and diversity of plants in African rain forests. In Chapter 5, we perform a detailed analysis of pollen morphology within a strongly supported monophyletic group of five African genera, including Isolona and Monodora. We specifically assess if pollen characters are useful for classification purposes within Isolona and Monodora using a species-level molecular phylogeny. The results show a wide pollen morphological diversity. The pollen types defined within Isolona and Monodora provide little taxonomic information for major clades within both genera. However, pollen variation proves useful as a support of phylogenetic relatedness between groups of closely related species. Finally in Chapter 6, a monographic revision of both Isolona and Monodora is presented. Isolona consists of 20 species with five endemic to Madagascar and one newly described species. Monodora has a total of 14 species, three of which were described during this PhD project from Tanzania. Detailed descriptions as well as keys are provided. The conservation status of each species is assessed following the IUCN recommendations. Just under half of the total number of species from both genera is assigned to some level of threat (12 species or 60% in Isolona and four species or 28% in Monodora). <br/

    Pybus -- A Python Software Bus

    Get PDF
    A software bus, just like its hardware equivalent, allows for the discovery, installation, configuration, loading, unloading, and run-time replacement of software components, as well as channeling of inter-component communication. Python, a popular open-source programming language, encourages a modular design on software written in it, but it offers little or no component functionality. However, the language and its interpreter provide sufficient hooks to implement a thin, integral layer of component support. This functionality can be presented to the developer in the form of a module, making it very easy to use. This paper describes a Pythonmodule, PyBus, with which the concept of a "software bus" can berealized in Python. It demonstrates, within the context of the ATLAS software framework Athena, how PyBus can be used for the installation and (run-time) configuration of software, not necessarily Python modules, from a Python application in a way that is transparent to the end-user

    Revealing the secrets of African annonaceae : systematics, evolution and biogeography of the syncarpous genera Isolona and Monodora

    No full text
    The goal of this PhD project was to study the evolution, systematics and biogeography of two African genera from the pan-tropical Annonaceae family: Isolona and Monodora. Both genera are unique within the family in that the female reproductive parts (or carpels) are fused into a single unit. All other Annonaceae have freely arranged carpels. We investigated the phylogenetic relationships of Isolona and Monodora at the intra-familial and intra-generic levels. In Chapter 2, we explore the influence of priors when using the novel Bayesian based posterior mapping to study the evolution of morphological characters. Up to now, it was unclear if these priors had any influence on the results. Using a family level molecular phylogeny of the Annonaceae, we study the evolution of two morphological characters under different prior values. We show that different prior values will return different results. Thus, inadequate prior values can lead to erroneous conclusions over the evolution of the studied morphological characters. We also indicate a practical way to choose the prior values when using the posterior mapping approach to study morphological character evolution. In Chapter 3, using the posterior mapping approach, we study the evolutionary origins of syncarpy in Annonaceae. The closest relatives of Isolona and Monodora are elucidated. We generate a well resolved phylogeny which included for the first time the majority of African Annonaceae genera. We also study additional morphological and palynological characters relevant to Annonaceae classification in general. Our phylogenetic analyses recover a fully resolved clade comprising twelve endemic African genera, including Isolona and Monodora, which was nested within the so-called long-branch clade. This is the largest and most species-rich clade of African genera identified to date within Annonaceae. Our results indicate that syncarpy arose by fusion of a moderate number of carpels. The alternative hypothesis that syncarpy arose by multiplication of an initial single carpel receives no support. In Chapter 4 we use African Annonaceae as a model family to study the biogeographical aspects of the evolutionary origins of African rain forests. It is generally thought that the large West-Central rain forest blocks was continuous during the Eocene with the now fragmented and smaller forests of East Africa, explaining the strong floristic affinities between both areas. Using dated molecular phylogenies we provide evidence of the recurring break-up and reconnection of this pan-African rain forest during the Oligocene and Miocene. The reconnections allowed for biotic exchange while the break-ups induced speciation enhancing the levels of endemicity, thus providing an explanation for present-day patterns in the distribution and diversity of plants in African rain forests. In Chapter 5, we perform a detailed analysis of pollen morphology within a strongly supported monophyletic group of five African genera, including Isolona and Monodora. We specifically assess if pollen characters are useful for classification purposes within Isolona and Monodora using a species-level molecular phylogeny. The results show a wide pollen morphological diversity. The pollen types defined within Isolona and Monodora provide little taxonomic information for major clades within both genera. However, pollen variation proves useful as a support of phylogenetic relatedness between groups of closely related species. Finally in Chapter 6, a monographic revision of both Isolona and Monodora is presented. Isolona consists of 20 species with five endemic to Madagascar and one newly described species. Monodora has a total of 14 species, three of which were described during this PhD project from Tanzania. Detailed descriptions as well as keys are provided. The conservation status of each species is assessed following the IUCN recommendations. Just under half of the total number of species from both genera is assigned to some level of threat (12 species or 60% in Isolona and four species or 28% in Monodora)
    corecore