PYBUS - A PYTHON SOFTWARE BUS

W. T. L. P. Lavrijsen*, LBNL, Berkeley, CA 94530, USA

Abstract

A software bus, just like its hardware equivalent, al-
lows for the discovery, installation, configuration, load-
ing, unloading, and run-time replacement of software com-
ponents, as well as channeling of inter-component com-
munication. Python, a popular open-source programming
language, encourages a modular design on software writ-
ten in it, but it offers little or no component functionality.
However, the language and its interpreter provide sufficient
hooks to implement a thin, integral layer of component sup-
port. This functionality can be presented to the developer
in the form of a module, making it very easy to use. This
paper describes a Python module, PYBUS, with which the
concept of a “software bus” can be realized in Python. It
demonstrates, within the context of the ATLAS software
framework ATHENA, how PYBUS can be used for the in-
stallation and (run-time) configuration of software, not nec-
essarily Python modules, from a Python application in a
way that is transparent to the end-user.

INTRODUCTION

The software in use and being written today for the next
generation of High Energy Physics (HEP) detectors is so
large, that link times have become prohibitively long. The
straightforward, and generally applied, solution is to make
use of dynamic linking, which gives rise to a new prob-
lem: making sure that all the required shared libraries are
located and properly setup for use. This situation is further
complicated in an interactive environment, where the user
wants to build and specify new modules on the fly, effec-
tively working with them in a similar way as with hardware
components.

In ATLAS [1] and in LHCb [2], two of the Large Hadron
Collider (LHC) [3] experiments, the interactive software
environment is provided by the Python interpreter [4],
which has only limited support for locating and (un)loading
of modules. PYBUS, itself implemented as a Python mod-
ule, improves on this by acting as a software bus, which al-
lows for the discovery, installation, configuration, loading,
unloading, and run-time replacement of software compo-
nents.!

In this paper, the PYBUS architecture and the underlying
ideas, as well as its implementation are described.

* WLavrijsen@Ibl.gov
'In this paper, no distinction will be made between modules, (pure)
Python modules, and software components

ARCHITECTURE

The four basic design principles for a software bus are
defined in [5]:

e Minimal core semantics. The bus becomes an effec-
tive communication device by minimizing the require-
ments on communicating applications.

o Self-describing objects. Introspection can be used to
translate objects from one type into another, to ease
communication between applications, as well as to de-
termine interest in the objects among listeners.

e Dynamic classing. New, or modified, functionality
can be made available without taking the bus “down,”
by implementing new, or modifying existing, classes
dynamically.

e Anonymous communication. Data objects are sent
and received in a space, time, and synchronization
decoupled manner, and independent of the identities
and data producers and data consumers, as illustrated
in Fig. 1.

Where the authors of [S] had to implement their own
programming language to achieve the above, Python practi-
tioners will recognize immediately that much of the needed
functionality is provided out-of-the-box by the Python in-
terpreter. In particular, dynamic classing and the avail-
ability of reflection information are an essential part of the
Python language. Further, the pieces that are missing, are
mostly already there in a rudimentary form. Thus, PYBUS
can be implemented as a light-weight layer (in fact, as a
Python module), that interacts naturally with the Python
interpreter.

The choice of PYBUS as a module makes life easier for
the end-user, but it does set some “play nice” rules for mod-
ules and the use of modules. That is, PYBUS is a client of
the interpreter, just like any other module, and has no spe-
cial privileges. It is important to note that because of this
flat structure, PYBUS-style components are normal Python
modules: the software bus only adds to the ways that they
can be used and there are thus no restrictions on normal
Python uses.

IMPLEMENTATION

The core of the implementation consists of improve-
ments on already existing Python functionality, in order to
deal with more complex situations. The following is a list
of component functionality made available by PYBUS.

User
Interface

User
Interface

| | User
(A) Interface

VSIS

. |

N

Time

PR
G

User
Interface

User
Interface

e

User
Interface

Figure 1: A software bus anonymizes communications to allow for space decoupling, e.g. multiple interfaces using the
same module (A). Time decoupling, e.g. an interface can use data produced by a module without being connected at the
same time (B). And synchronization decoupling (C), e.g. the interface is notified through a callback when the work done

by a module is finished, thus, it need not block. [6]

Symbolic Component Names and Lookup

Python modules are loaded on the basis of names that
map directly to the filesystem; components are loaded ac-
cording to the functionality that is requested. A request
for functionality that is known by PYBUS is followed by
localizing the module that contains a component with that
functionality, and performing the appropriate steps, which
may include downloading the component from a cache and
installing it, to load it into the Python interpreter.

When a user requests a component to be connected, she
can do so with the logical, functional, or actual name.
Components that are available to PYBUS must be regis-
tered first under logical names, optionally advertising un-
der functional names the public contracts that they fulfill
(their “interfaces” in a sense). Note that registered does not
mean that it has to be available: upon a request to connect
a module, it may need to be retrieved or configured first.

If a component is not registered, it can only be connected
using its actual name, which is the name that would be used
in the standard way of identifying a Python module. Un-
like the actual name, which has to be unique, the logical
name and functional names may be claimed by more than
one component. PYBUS will choose among the available
components on the basis of its own configuration, a priority
scheme, or a direct action from the user.

Connecting, Disconnecting and Replacing

Connections that are based on symbolic names allow the
application writer to integrally replace a (version of a) com-

ponent throughout the application at startup. PYBUS adds
the capability to search through outstanding references to
replace or remove these individually once the component
to which they point gets replaced, or removed, at run-time.

The replacement of modules is achieved by using the
garbage collection and reference-counting information of
the Python interpreter to track down any outstanding refer-
ences, and to act accordingly: some references, e.g. those
to variables or instances, are rebound, whereas others, e.g.
object instances, are destroyed. Disconnecting a compo-
nent is rather similar to replacing it, with the only exception
that no references are rebound: all are destroyed.

Configuration and Dependencies

A PYBUS-enabled module advertises configuration pa-
rameters and dependencies that can subsequently be exter-
nalized and managed globally. This allows for integral, site
specific environment setups.

In the process of connecting a module, PYBUS will look
for conventional parameters (starting with “PyBus_”) in
the dictionary of the module that contains the component.
These parameters may describe dependencies, new compo-
nents to be registered, post-connect or pre-disconnect con-
figuration, and so on. It is purely optional for a module to
provide any of these parameters and PYBUS will use some
heuristics if they are absent. For example, all public identi-
fiers are considered part of the interface, so that any module
can be connected as if it were a component. The user can
decide the name under which the module should be con-
nected, which can be any alias that stands in for the name

to be used in the user code, similar to the “as” option for
standard Python imports. If no alias is provided, the logical
name is used. PYBUS keeps track of the aliases.

Python allows user modules to intercept the importing of
other modules, by replacing the import hook. This mecha-
nism allows the PYBUS implementation to bookmark those
modules that are imported during the process of connect-
ing a component, and thus manage component dependen-
cies. When disconnecting a component, the modules that
it loaded are not automatically removed, since the inter-
preter itself holds on to a reference to them, even after all
user-level modules are unloaded. There is no real reason
to force the unloading of standard modules, but if the mod-
ules are components that are connected to PYBUS, they are
unloaded, too.

Note that when a new component is loaded which in
turn loads other components, PYBUS needs to resolve the
lookup of those components anew: the registration for
these dependent components may have changed and dif-
ferent actual components may be chosen this time around.

User Interface Presentation Layer

The communication between components is anonymized
using publish/subscribe, see [6], and formalized with
adapters to ensure that proper change notification events
are sent out, and to allow components to specify the
preferred/optimal representation in a user interface (for
adapters used in communication by software components,
see e.g. [7] and [8]).

The adapters form a User Interface Presentation Layer
(UIPL), through which the configuration, input and output
parameters, and functionality of components can be con-
nected to user interface elements. The bus inspects the
component for presentable elements, including (if applica-
ble) their type, range, name, and documentation. It sub-
sequently requests the user interface to supply elements
that are capable of providing a display of and/or interaction
with each of the parameters, based on their type, range, etc.
Both the interface element and the component should then
be hooked through the UIPL.

For example, assume that a configuration parameter of a
component is of a boolean type. This parameter can then
map onto e.g. a check box in a GUI. The bus requests the
GUI to provide a display of the boolean value, gets a check
box in return, and it subscribes the check box to a value
holder in the UIPL. It also subscribes itself to this holder.
Changes by the check box, changes the value in the value
holder, which in turn causes a notification to the bus, which
sets the value in the component.

Mapping through an UIPL has the advantage that sim-
ple user interfaces can be created automatically, and more
sophisticated user interfaces can be relatively easily peeled
off and replaced, since they never access the actual under-
lying component directly.

Miscellaneous

In addition, modules for various ways of discovery and
installation of components, and for compatibility between
Python versions are provided with the implementation. For
example, a given directory location can be scanned and
any modules found automatically registered for subsequent
connection.

EXAMPLE

A relatively straightforward example is given in Fig. 2,
where the configuration tool for the ATLAS run-time en-
vironment is implicitly used to setup access to a requested
module.

2. Setup

User 1. Use ROOT

Interface

5.[Enable, as

if impor)
ported 3. New environment

e

Figure 2: PYBUS example: setting up PYROOT in the AT-
LAS environment.

First, the user requests the ROOT module (1), for which
PYBUS finds in its configuration that it needs to setup the
run-time environment (2). A new environment is set up (3),
and used to locate PYROOT and to load it into the Python
interpreter, while pre- and post-configuration are handled
as required (4). Finally, the module is “injected” into the
user module namespace as if it was imported and can now
be used (5).

OUTLOOK

PYBUS is currently used in the ATHENA framework to
handle some incompatibilities between Python versions 2.2
and 2.3. Also, the GANGA project [9] intends to use Py-
BUS for configuration of user provided handlers.

REFERENCES
[1] Atlas Collaboration, “ATLAS - Technical Proposal”,
CERN/LHCC94-43, CERN, December 1994.

[2] LHCb Collaboration, “LHCb - Technical
CERN/LHCC98-4, CERN, February 1998.

[3] LHC Study Group, “The LHC conceptual design report”,
CERN/AC/95-05, CERN, October 1995.

[4] G. van Rossum and F. L. Drake, Jr. (eds.), “Python Ref-

Proposal”,

erence Manual”, Release 2.3.4, PythonLabs, May 2004.
http://www.python.org.
[5] B. Oki, et al., “The Information Bus. An Architecture

for Extensible Distributed Systems”, ACM 0-89791-632-

8/93/0012, December 1993.

[6] P. Th. Eugster, et al., “The Many Faces of Pub-
lish/Subscribe”, ACM 0360-0300/03/0600-0114, June 2003.

[7] N. Carriero, D. Gelernter, “Linda in context”, ISSN: 0001-
0782, April 1989.

[8] S. Lewis, “The Art and Science of SmallTalk”, ASIN:
0133713458, Prentice Hall, May 1995.

[9]1 A. Soroko, et al., “The GANGA user interface for physics
analysis on distributed resources”, CHEP 2004, Conference
Proceedings.

