1,591 research outputs found

    Entanglement and Quantum Phase Transitions via Adiabatic Quantum Computation

    Full text link
    For a finite XY chain and a finite two-dimensional Ising lattice, it is shown that the paramagnetic ground state is adiabatically transformed to the GHZ state in the ferromagnetic phase by slowly turning on the magnetic field. The fidelity between the GHZ state and an adiabatically evolved state shows a feature of the quantum phase transition.Comment: Revise

    Scattering from supramacromolecular structures

    Full text link
    We study theoretically the scattering imprint of a number of branched supramacromolecular architectures, namely, polydisperse stars and dendrimeric, hyperbranched structures. We show that polydispersity and nature of branching highly influence the intermediate wavevector region of the scattering structure factor, thus providing insight into the morphology of different aggregates formed in polymer solutions.Comment: 20 pages, 8 figures To appear in PR

    Existence and stability of viscoelastic shock profiles

    Full text link
    We investigate existence and stability of viscoelastic shock profiles for a class of planar models including the incompressible shear case studied by Antman and Malek-Madani. We establish that the resulting equations fall into the class of symmetrizable hyperbolic--parabolic systems, hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. The new contributions are treatment of the compressible case, formulation of a rigorous nonlinear stability theory, including verification of stability of small-amplitude Lax shocks, and the systematic incorporation in our investigations of numerical Evans function computations determining stability of large-amplitude and or nonclassical type shock profiles.Comment: 43 pages, 12 figure

    Toward closing rice telomere gaps: mapping and sequence characterization of rice subtelomere regions.

    Get PDF
    Despite the collective efforts of the international community to sequence the complete rice genome, telomeric regions of most chromosome arms remain uncharacterized. In this report we present sequence data from subtelomere regions obtained by analyzing telomeric clones from two 8.8 × genome equivalent 10-kb libraries derived from partial restriction digestion with HaeIII or Sau3AI (OSJNPb HaeIII and OSJNPc Sau3AI). Seven telomere clones were identified and contain 25¿100 copies of the telomere repeat (CCCTAAA)n on one end and unique sequences on the opposite end. Polymorphic sequence-tagged site markers from five clones and one additional PCR product were genetically mapped on the ends of chromosome arms 2S, 5L, 10S, 10L, 7L, and 7S. We found distinct chromosome-specific telomere-associated tandem repeats (TATR) on chromosome 7 (TATR7) and on the short arm of chromosome 10 (TATR10s) that showed no significant homology to any International Rice Genome Sequencing Project (IRGSP) genomic sequence. The TATR7, a degenerate tandem repeat which is interrupted by transposable elements, appeared on both ends of chromosome 7. The TATR10s was found to contain an inverted array of three tandem repeats displaying an interesting secondary folding pattern that resembles a telomere loop (t-loop) and which may be involved in a protective function against chromosomal end degradatio

    Phases and geometry of the N=1 A_2 quiver gauge theory and matrix models

    Full text link
    We study the phases and geometry of the N=1 A_2 quiver gauge theory using matrix models and a generalized Konishi anomaly. We consider the theory both in the Coulomb and Higgs phases. Solving the anomaly equations, we find that a meromorphic one-form sigma(z)dz is naturally defined on the curve Sigma associated to the theory. Using the Dijkgraaf-Vafa conjecture, we evaluate the effective low-energy superpotential and demonstrate that its equations of motion can be translated into a geometric property of Sigma: sigma(z)dz has integer periods around all compact cycles. This ensures that there exists on Sigma a meromorphic function whose logarithm sigma(z)dz is the differential. We argue that the surface determined by this function is the N=2 Seiberg-Witten curve of the theory.Comment: 41 pages, 2 figures, JHEP style. v2: references adde

    Peak Stir Zone Temperatures during Friction Stir Processing

    Get PDF
    The stir zone (SZ) temperature cycle was measured during the friction stir processing (FSP) of NiAl bronze plates. The FSP was conducted using a tool design with a smooth concave shoulder and a 12.7-mm step-spiral pin. Temperature sensing was accomplished using sheathed thermocouples embedded in the tool path within the plates, while simultaneous optical pyrometry measurements of surface temperatures were also obtained. Peak SZ temperatures were 990 ⁰Cto 1015 ⁰C (0.90 to 0.97 TMelt) and were not affected by preheating to 400⁰C, although the dwell time above 900 ⁰C was increased by the preheating. Thermocouple data suggested little variation in peak temperature across the SZ, although thermocouples initially located on the advancing sides and at the centerlines of the tool traverses were displaced to the retreating sides, precluding direct assessment of the temperature variation across the SZ. Microstructure-based estimates of local peak SZ temperatures have been made on these and on other similarly processed materials. Altogether, the peak-temperature determinations from these different measurement techniques are in close agreement

    Continuous cropping of endangered therapeutic plants via electron beam soil treatment and neutron tomography

    Get PDF
    Various medicinal plants are threatened with extinction owing to their over exploitation and the prevalence of soil borne pathogens. In this study, soils infected with root rot pathogens, which prevent continuous cropping, were treated with an electron beam. The level of soil borne fungus was reduced to amp; 8804;0.01 by soil electron beam treatment without appreciable effects on the levels of antagonistic microorganism or on the physicochemical properties of the soil. The survival rate of 4 year old plant was higher in electron beam treated soil 81.0 than in fumigated 62.5 , virgin 78 , or untreatedreplanting soil 0 . Additionally, under various soils conditions, neutron tomography permitted the monitoring of plant health and the detection of root pathological changes over a period of 4 6 years by quantitatively measuring root water content in situ. These methods allow continual cropping on the same soil without pesticide treatment. This is a major step toward the environmentally friendly production of endangered therapeutic herb

    Site-Selective Passivation of Defects in NiO Solar Photocathodes by Targeted Atomic Deposition

    Get PDF
    For nanomaterials, surface chemistry can dictate fundamental material properties, including charge-carrier lifetimes, doping levels, and electrical mobilities. In devices, surface defects are usually the key limiting factor for performance, particularly in solar-energy applications. Here, we develop a strategy to uniformly and selectively passivate defect sites in semiconductor nanomaterials using a vapor-phase process termed targeted atomic deposition (TAD). Because defects often consist of atomic vacancies and dangling bonds with heightened reactivity, we observe-for the widely used p-type cathode nickel oxide-that a volatile precursor such as trimethylaluminum can undergo a kinetically limited selective reaction with these sites. The TAD process eliminates all measurable defects in NiO, leading to a nearly 3-fold improvement in the performance of dye-sensitized solar cells. Our results suggest that TAD could be implemented with a range of vapor-phase precursors and be developed into a general strategy to passivate defects in zero-, one-, and two-dimensional nanomaterials

    Search for R-Parity Violating Decays of Scalar Fermions at LEP

    Full text link
    A search for pair-produced scalar fermions under the assumption that R-parity is not conserved has been performed using data collected with the OPAL detector at LEP. The data samples analysed correspond to an integrated luminosity of about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle is expected to be unstable. Searches of R-parity violating decays of charged sleptons, sneutrinos and squarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield final states consisting of leptons, jets, or both with or without missing energy. No significant single-like excess of events has been observed with respect to the Standard Model expectations. Limits on the production cross- section of scalar fermions in R-parity violating scenarios are obtained. Constraints on the supersymmetric particle masses are also presented in an R-parity violating framework analogous to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.

    Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2

    Get PDF
    The hadronic structure function of the photon F_2^gamma is measured as a function of Bjorken x and of the factorisation scale Q^2 using data taken by the OPAL detector at LEP. Previous OPAL measurements of the x dependence of F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted by QCD, the data show positive scaling violations in F_2^gamma. Several parameterisations of F_2^gamma are in agreement with the measurements whereas the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001, Ascona, Switzerlan
    • 

    corecore