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Abstract Despite the collective efforts of the interna-
tional community to sequence the complete rice genome,
telomeric regions of most chromosome arms remain
uncharacterized. In this report we present sequence data
from subtelomere regions obtained by analyzing telo-
meric clones from two 8.8 · genome equivalent 10-kb
libraries derived from partial restriction digestion with
HaeIII or Sau3AI (OSJNPb HaeIII and OSJNPc
Sau3AI). Seven telomere clones were identified and
contain 25–100 copies of the telomere repeat
(CCCTAAA)n on one end and unique sequences on the
opposite end. Polymorphic sequence-tagged site markers
from five clones and one additional PCR product were
genetically mapped on the ends of chromosome
arms 2S, 5L, 10S, 10L, 7L, and 7S. We found distinct
chromosome-specific telomere-associated tandem re-
peats (TATR) on chromosome 7 (TATR7) and on the
short arm of chromosome 10 (TATR10s) that showed
no significant homology to any International Rice

Genome Sequencing Project (IRGSP) genomic se-
quence. The TATR7, a degenerate tandem repeat which
is interrupted by transposable elements, appeared on
both ends of chromosome 7. The TATR10s was found
to contain an inverted array of three tandem repeats
displaying an interesting secondary folding pattern that
resembles a telomere loop (t-loop) and which may be
involved in a protective function against chromosomal
end degradation.

Introduction

Telomeres are specialized chromosomal end structures
which play an essential role in maintaining chromatin
structure by preventing both end degradation and end-
to-end fusion during recombination and in promoting
chromosomal end replication (Gasser 2000; Knight and
Flint 2000; Riha et al. 2001). Telomeric DNA mediates
many biological activities associated with cell-cycle reg-
ulation, cellular aging, and the movement and localiza-
tion of chromosomes within the nucleus and with the
transcriptional regulation of subtelomeric genes (de
Bruin et al. 2001; Riethman et al. 2001).

Subtelomeric repeats belong to the most rapidly
evolving chromosomal sequences and, consequently,
vary considerably between chromosomes in a cell and
between genotypes or related species. In the human
genome, subtelomeres vary in size from 8 kb up to
300 kb (Riethman et al. 2001; Der-Sarkissian et al.
2002), whereas in plant genomes, such as tomato (Broun
et al. 1992; Zhong et al. 1998), rice (Ohmido and Fukui
1997; Ohmido et al. 2000, 2001), and tomato (+) potato
hybrids (de Jong et al. 2000), such regions can measure
up to 1,000 kb. The highly variable distribution of large
duplicated subtelomeric segments are caused by
homology-based, non-allelic (ectopic) recombination
events between nonhomologous chromosomes (Knight
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and Flint 2000; Scherf et al. 2001; Der-Sarkissian et al.
2002). Subtelomeric regions have also been shown to be
gene-rich (Bishop et al. 2000; Riethman et al. 2001;
Scherf et al. 2001; Bringaud et al. 2002; reviewed by
Barry et al. 2003). Intense efforts to close telomere gaps
and integrate telomere repeat stretches (TTAGGG)n
into the human genome sequence have been successful
using genetic and physical mapping of the human telo-
mere regions (Lese et al. 1999; Knight et al. 2000) and
large telomere-terminal fragments cloned in specialized
yeast artificial chromosome (YAC) cloning vehicles
called half-YACs. The result has been the integration of
32 of the 96 telomere regions into the human genome
draft sequence (Riethman 1997; Riethman et al. 2001;
Xiang et al. 2001). In tomato, species-specific subtelo-
meric repeats (162-bp unit, TGR1, 500–10,000 copies
per locus) have been identified in 20 of the 24 telomeres
near the telomere repeat stretch (Ganal et al. 1991;
Broun et al. 1992; Zhong et al. 1998). Some subtelomere
sequences have also been identified and mapped using a
degenerate telomere primer and the Vectorette PCR
approach in wheat (Mao et al. 1997), barley (Kilian and
Kleinhofs 1992; Röder et al. 1993), and rice (Ashikawa
et al. 1994). Following completion of the Arabidopsis
genome sequence, all ten chromosomal ends, including
the telomere repeat regions, were integrated into the
genome sequence with the exception of the short arm
ends of two chromosomes, 2S and 4S, which contain
nucleolar organizer regions (NORs) (http://mips.gsf.de/
proj/thal/db/gv/gv_frame.html, December 2004) (Ko-
tani et al. 1999).

Rice (Oryza sativa L.) is the most important human
food crop in the world and a model system for monocot
genomic and evolutionary studies. Rice centromeres and
flanking pericentromeric heterochromatin (Singh et al.
1996a, b; Cheng et al. 2001, 2002; Feng et al. 2002) and
telomeres (Ohmido and Fukui 1997) have been well
studied at the cytogenetic level. Fluorescence in situ
hybridization (FISH) revealed that the Arabidopsis type
(CCCTAAA)n telomere repeat sequence hybridized to
all 24 chromosomal ends (Ohmido et al. 2000, 2001). In
that same study, the average size of a rice telomere was
measured at 3.5 kb.

At the molecular genetic level, three short subtelo-
meric sequences have been mapped on the distal ends of
chromosome arms 5L, 11S, and 12S (Ashikawa et al.
1994), whereas another three pulsed field gel electro-
phoresis (PFGE) markers have been mapped on the ends
of chromosomes 8, 9, and 11 (Wu and Tanksley 1993).
One rice genome-specific tandem repeat (TrsA or Os48:
355-bp tandem repeat) was found on the distal ends of
eight chromosome pairs of indica rice (Oryza sativa ssp.
indica) and two chromosomal ends of japonica rice
(Oryza sativa ssp. japonica) (Ohtsubo et al. 1994; Ohmido
and Fukui 1997; Cheng et al. 2001). FISH analysis of
extended DNA fibers of japonica rice revealed that TrsA
was organized in two arrays of 82 kb and 241 kb each
that were located adjacent to the telomere tandem arrays,
on 6L and 12L, respectively (Ohmido et al. 2000, 2001).

Genome sequencing of O. sativa ssp. japonica var.
Nipponbare has been completed recently under the
auspices of the International Rice Genome Sequencing
Project (IRGSP), a consortium of research institutions
from ten countries. The sequence included the complete
sequence of the centromeres from chromosomes 4
(Zhang et al. 2004) and 8 (Nagaki et al. 2004; Wu et al.
2004). Unfortunately, all of the rice telomeric regions
still remain as physical gaps despite exhaustive analyses
of the almost complete bacterial artificial chromosome
(BAC)-, P1 artificial chromosome (PAC)-, and YAC-
based physical maps (Chen et al. 2002) and the IRGSP
genome sequence (Feng et al. 2002; Sasaki et al. 2002;
The Rice Chromosome 10 Sequencing Consortium
2003; The Rice Chromosome 3 Sequencing Consortium
2005; IRGSP 2005). The final frontier in achieving a
completed rice genome sequence is to fill the approxi-
mately 50 remaining gaps that include ten centromeres,
24 telomeres, as well as several highly repetitive hetero-
chromatin regions. This paper reports on the sequence
characterization of seven unique subtelomeric clones
containing 25–100 copies of the telomeric array sequence
at one end and unique sequence on the opposite end. In-
depth sequence annotation provides two chromosome-
specific telomere-associated tandem repeats (TATR7
and TATR10s), the occurrence of various transposon
insertions, and interesting features of chromosomal
ends.

Materials and methods

Library screening

We screened the OSJNPb and OSJNPc rice genomic li-
braries, representing 8.8 · genome equivalents, with
166,752, and 138,960 clones, respectively; the average
size of each insert was 10.8 kb (10-kb libraries) for
clones containing rice telomeric repeats (http://
www.genome.arizona.edu; Yang et al. 2003). Eleven
high-density colony filters of the two libraries were
gridded in a 5·5-array pattern on 22.5·22.5-cm Hybond
N+ filters (Amersham, UK) and hybridized with a
telomere-specific overgo probe (OVG-A: CCCTAAAC-
CCTAAACCCTAAACCC; OVG-B: TAGGGTTTAG-
GGTTTAGGGTTTAG). Radioactive labeling and
hybridization was performed as described by Budiman
et al. (2000) and Chen et al. (2002).

DNA sequencing

A total of 96 clones showing strong hybridization signals
with the telomere repeat were picked into a 96-well plate,
end sequenced with the T3 and T7 vector primers of
pCUGIblu21 (Yang et al. 2004) using BigDye termina-
tor chemistry v3.0 [Applied Biosystems (ABI), Foster
City Calif.] and electrophoresed on a ABI 3730 x1
automated DNA sequencer. Base-calling was performed
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automatically using PHRED, and vector sequences were
removed by CROSS_MATCH (Ewing and Green 1998; Ew-
ing et al. 1998). We applied the TGS system F-700
transposon method (Finnzymes, Espoo, Finland) for
complete sequencing of the selected 10-kb clones (Yang
et al. 2003). High-quality, vector-trimmed sequences
were then used for the sequence assembly of the 10-kb
clones using PHRAP and CONSED (Gordon et al. 1998).

During the sequencing of the telomere clones, we
found insert size variation for two clones—pb005D12
and pb273O07. Clone pb005D12 consisted of only
telomere repeat sequences, and the insert size was
unstable during growth in Escherichia coli, varying be-
tween 1000 bp and 40 bp. Clone pb273O07 showed size
variation derived from the deletion of 7-bp unit(s) of the
telomere repeat (CCCTAAA) (up to six units: 42 bp)
and four occurrences of the identical nucleotide substi-
tution in the telomere stretch (TTTAGGG fi T
ATAGGG) [see figure in Electronic Supplmentary
Material (ESM)].

Sequence analysis

We analyzed the DNA sequences of the telomeric clones
by pairwise comparison using PIPMAKER (Schwartz et al.
2000) and MIROPEAT software (Parsons 1995). Further
BLAST and repeat survey analyses were conducted using
BLAST-NR (http://www.ncbi.nlm.nih.gov/BLAST/) and
REPEATMASKER (http://ftp.genome.washington.edu/RM/
webrepeatmaskerhelp.html). The GC composition of
every 50-bp window was calculated using GENOMATIX

(http://www.genomatix.de/cgi-bin/tools/tools.pl), while
the detection of putative genes was analyzed using sev-
eral web-based gene prediction programs including:
FGENE-SH MONOCOT (http://www.softberry.com/ber-
ry.phtml), GENESCAN RICE (http://genes.mit.edu/GEN-
SCAN.html), RICE GAAS (http://ricegaas.dna.affrc.go.jp/
), and GENEMARK (http://opal.biology.gatech.edu/Gene-
Mark/eukhmm.cgi). The GenBank accession numbers
of the sequences described in this paper are given in
Table 1.

Genetic mapping

Sequence-tagged site primers were created from non-
redundant sequence regions of telomeric clones using the
software package PRIMER3 (http://www-genome.wi.mi-
t.edu/genome_software/other/primer3.html; Rozen and
Skaletsky 2000). Genetic mapping was performed using
96 backcross inbred lines (BILs; BCF5 of the F1 between
the rice cultivars Nipponbare and Kasalath) and their
genotype scores of reference restriction fragment length
polymorphism (RFLP) markers (http://rgp.dna.af-
frc.go.jp/publicdata/genotypedataBILs/genotypedata.
html). An additional population of 80 BILs (BC1F6)
derived from a cross between the rice lines Milyang 23
and Hapcheonaengmi 3 was also employed to confirm

their map position (Oh et al. 2004). Approximately
10 ng of genomic DNA, 200 lM of dNTP, 200 lM
of STS primers designed from MWG (Philadelphia, Pa.;
http://www.mwg-biotech.com/html/i_custom/i_primer.
shtml), and 1 U Taq polymerase (Promega, Madison,
Wis.) were used for STS PCR in a total volume of
12.5 ll. After 35 cycles of 20 s at 94�C, 30 s at 56�C, and
1 min at 72�C, the PCR products were separated on a
2.5–3% agarose gel [mixture of 1.5–2% Metaphor
(BMA, Rockland, Me.) and 1% normal agarose (Fisher
Scientific)] in 1· TAE buffer at 4 V/cm for 2 h. When
increased resolution was necessary, we separated the
PCR products on a 4% acrylamide sequencing gel and
visualized the DNA bands by silver staining (Cho et al.
1996).

Results

Identification of telomere clones

In an effort to identify and characterize telomere regions
in japonica rice (O. sativa cv. Nipponbare), we screened
the two 10-kb libraries with the (CCCTAAA)5 telomere
repeat (Yang et al. 2003) and identified around 200
positive clones, of which 96 were end-sequenced. The ten
clones showing telomere repeats at one end were fully
sequenced. Three out of these ten, pc174K02 (18 kb),
pc201O09 (15 kb), and pb375C08 (6.5 kb), were deter-
mined not to be telomeric based on genetic mapping or
BLAST analysis with the rice genome sequence and were
mapped to chromosomes 5, 1, and 3, respectively.

Table 1 shows the seven remaining candidate clones
with arrays of 25–100 copies of the telomere repeat.
Their inserts begin with any one nucleotide of the
CCCTAAA sequence (italics with underscoring in the
table) and end with the expected restriction enzyme
cloning site (lowercase letters with underlining in the
table) used to construct the libraries. Genomic DNA
inserts from the HaeIII 10-kb library (start with CC and
end with GG: cc-----gg) are supposed to be cloned into
the EcoRV end site (end with -GAT and start with
ATC-). However, for two HaeIII clones, pb106I21 and
pb273O03, the inserts begin with the telomere repeat
(ctaaacc and aaaccct, respectively) instead of the pre-
dicted HaeIII digestion site (cc) and end with correct
HaeIII digestion (gg) site ligated to the EcoRV cloning
site of the vector (Fig. 1a, Table 2). The pb005D12 in-
sert, which contains only telomere motifs, starts with ac-
and ends with -aa, thereby showing incorrect cloning
sites at both ends. For the Sau3AI library, genomic in-
serts (gatc—gatc) are supposed to be cloned into a
BamHI digested cohesive end site (ending with -gatc).
The two Sau3AI clones, pc311K23 and pc198E15, begin
with the telomere motif (ccctaaa and aaaccct, respec-
tively) instead of a Sau3AI end (gatc). For both of these
clones, the cloning vector also showed truncation of the
cohesive end (gatc) that resulted in a blunt end. Two
HaeIII clones, pb083I20 and pb027O22, fortuitously
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showed the correct HaeIII site (cc) by starting with cc of
the telomere motif. The resulting analyses indicate that
most of the distal telomere sequences were illegitimately
ligated into the EcoRV-digested blunt end vector for the
HaeIII library, whereas, it is likely that a fraction of the
cohesive ends of the BamHI-digested cloning vector
were damaged during preparation of dephophorylated
linear vector (Yang et al. 2003; Kim et al. 2004) (e.g.,
mechanical breakage or exonuclease contamination of
the restriction enzyme or CIP), resulting in blunt ends
that would be suitable for telomere cloning. Distal
telomere ends are known to contain a single G overhang.
We assume that mechanical breakage inside the telomere
stretch or removal of distal single strands of the telomere
repeat stretch during the preparation of insert DNA
resulted in blunt ends and, consequently, the insert
DNAs were competent to be cloned into blunt end
vectors.

The telomere repeat array in the seven clones ranges
from 180 bp (pb106I21) to 661 bp (pb027O22) and

includes a degenerate telomere repeat unit which is rel-
atively unique in each clone [e.g., CCCTAA T in
pb106I21 (Tel10S), CCCTA TA in pb083I20 (Tel7L),
CCCT GAA in pc311K23 (Tel3L), CCCT-AA in
pc098E15 (Tel2S) and pb027O22)] (Table 1).

Mapping and sequence characterization of candidate
telomeric clones

Five telomere clones and an additional PCR band de-
rived from a set of primers designed from a telomere-
associated tandem repeat (TATR7) were genetically
mapped by STS mapping at the termini of six chromo-
somes. All STS band polymorphisms were dominant
and amplified only in japonica (cv. Nipponbare) DNA
(Fig. 1). To eliminate mapping errors, we developed two
separate STS markers from each clone and (or) used two
independent mapping populations. The polymorphic
STS markers were named based on rice map positions
(Table 2).

Tel7L (pb083I20)

Clone pb083I20 contained a 6,116-bp insert, 255 bp of
which was the telomere repeat sequence. This clone
mapped to the end of the long arm of chromosome 7
(named: Tel7L) using two STS markers, 7L-A and 7L-B
(Table 2, Fig. 1). The 7L-A marker produced one dis-
tinct Nipponbare-specific band (the lower band in
Fig. 1), while, interestingly, primer pair 7L-B amplified
two independent PCR bands—7-B-u and 7L-B (top two

Table 1 Nucleotide sequences of the telomere, degenerate telomere stretch, and cloning site of the telomeric clones

Fig. 1 Duplex agarose gel electrophoresis of two STS PCR
products. Two PCRs, 7L-A and 7L-B, were carried out against
98 backcross inbred lines (BIL, BC1F5 of rice cultivars Nipponbare
and Kasalath). Both PCR products were separated on a mixture of
1.5% metaphor agarose and 1% regular agarose gel with 4 V/cm
for 3 h with 30 min of loading time interval. Two bands, 7L-A and
7L-B, cosegregated and mapped on the telomeric region of the
chromosome 7 long arm. An additional unexpected band, 7-B-u,
segregated independently and mapped on the other end of
chromosome 7. The 25-bp DNA ladders were loaded at 30-min
time intervals. Lanes n and k represent the parental rice cultivars,
Nipponbare and Kasalath, respectively
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bands in Fig. 1). The 7L-B band co-segregated with the
7L-A band (Fig. 1) as expected; however, the unex-
pected upper band, 7-B-u, segregated independently and
mapped to the opposite terminus of the same chromo-
some, i.e., on the short arm of chromosome 7 (Tel7L).
The 7-B-u fragment was cloned into pCUGIblu31 (Yang
et al. 2004) and sequenced using the T3 and T7 primers.
Two PCR products, 7LB and 7-B-u, showed significant
sequence similarity each other except for two insertions
of 17 bp and 20 bp at 7-B-u (Fig. 2). Sequence com-
parison showed that the 7-B-u sequence is a part of a
group of telomere-associated tandem repeats (TATR)
which appear in more than ten copies in the 6,116-bp
insert of the Tel7L clone (Figs. 2a, 3a, b), suggesting
that the TATR is present on both arms of chromo-
some 7 (named as TATR7). The TATR7 has no signif-
icant homology with rice sequences in GenBank (http://

www.ncbi.nim.nih.gov, December 2004), indicating that
TATR7 is likely present in the confined subtelomere
region of chromosome 7 of japonica rice.

Sequence annotation revealed that the contiguous
TATR7 array is interrupted by at least two repetitive
elements: first, by an unknown middle repetitive element
(speckled box in Fig. 3b, c) and then by a subsequent
nested insertion of a highly repetitive element into the
unknown element (gray box in Fig. 3b). The highly
repetitive element showed identical sequence similarity
with part of the RIRE9 solo-long terminal repeat (LTR;
GenBank accession no. AB033547; Han et al. 2000). Our
study revealed that the complete structure of RIRE9 was
not predicted correctly by Han et al. (2000). The exis-
tence of the related empty sites (GenBank accession no.
AE017070) and flanking 5-bp TSD sequence revealed
that the 2,283-bp sequence (between 668 bp and 3,520 bp

Table 2 Telomere-specific STS
markers, their map positions,
and primer sequence (n.d. not
determined)

aThe size (in basepairs) of the
PCR product from Nipponbare
(O. sativa ssp. japonica). All b-
ands were null in Kasalath (O.
sativa ssp. indica)
bRepresents the nucleotide po-
sition of STS primers from the
telomeric end
cThe 7-B-u is an additional ba-
nd amplified with the same STS
primer set and mapped at the
termini of the short arm of ch-
romosome 7

Original
clones

STS
markersa

Nucleotide
(5¢ fi 3¢)

Product
(bp)a

Positionb

pc098E15 2S 5¢-cctaaaccctaaccccaacc-3¢ 215 185
5¢-gatttcgaccccaacgacta-3¢

pc311K23 3L 5¢-tcaccattcttcgttgcatt-3¢ 199 111
5¢-accctgaacactgaaccctg-3¢

pb083I20 7L-A 5¢-gcattggagtcattgtgcttt-3¢ 248 559
5¢-tagtgaaattttgggccgac-3¢

7L-B/7-B-u 5¢-ggggttttagccaaagggta-3¢ 276/317 5,991/n.d.
5¢-tctccagcccaaaaattcac-3¢

pb106I21 10S-A 5¢-tggattaaaatggagctcgg-3¢ 237 4,180
5¢-ccgatctgaaccatcgatct-3¢

10S-B 5¢-ggcgatgtacgagaacctgt-3¢ 487 132
5¢-cccccaaaccctaaatccta-3¢

pb027O22 10L 5¢-ccctaaaccctaaccctaaacc-3¢ 360 495
5¢-acccaaaaactgtccagtcg-3¢

Fig. 2 Sequence analysis of
TATR7 in the Tel7L clone. a
Dotplot of Tel7L (6,116 bp)
and Tel7S (317 bp) represents
that Tel7S is a part of TATR7
in Tel7L clone. b The sequence
alignment shows that the
TATR7 is similar to Tel7S and
consists of a mosaic array of
several small repeat units. Three
repeat units—blue, pink, and
red, respectively—are
designated in different colors
and arrows with direction. A
long terminal repeat (LTR)
retrotransposon-like sequence
which was redundant in rice
genome and followed by the
TATR7 repeat (speckled box).
Each repeat unit was aligned
under Tel7L sequence
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of a total 3,852-bp RIRE9) is the complete element,
resembling a solo-LTR of a retrotransposon, where the
terminus begins with TG and ends with CA (Fig. 3c) . A
number of identical RIRE9 members (2,283 bp long)
were also identified with the flanking 5-bp TSD sequence
(Fig. 3d), but, no complete structure of this LTR retro-
transposon was identified in the IRGSP genome se-
quence (http://rgp.dna.affrc.go.jp/IRGSP/, December
2004), suggesting that it is a novel structure.

Tel10S (pb106I21)

Clone pb106I21, which measures 6,207 bp and ends with
a 180-bp telomere repeat array, genetically maps to the
terminal end of the short arm of chromosome 10
(named: Tel10S) using two STS markers, 10S-A and
10S-B (Table 2). Tel10S features segments of divergent
GC composition, ranging from 20% to 80% in each 50-
bp window. A distinct telomere-associated tandem re-
peat was identified in the Tel-10S (named: TATR10s)
that is followed by the 180-bp telomere repeat stretch
(Fig. 4b). No significant sequence similarity with the
TATR10s was detected in GenBank, suggesting that the
repeat is unique to the short arm telomere region of
chromosome 10. The remaining part of the sequence,
i.e., without the TATR10s, is redundant in the IRGSP
genome sequence. BLAST and subsequent analysis of
similar sequences revealed that the first 1,417 bp is from
part of an LTR retrotransposon, the complete structure

of which was identified from the sequence of GenBank
accession no. AL662960 (RIRE3-like retrotransposon).
This RIRE3-like retrotransposon contains 3,165 bp of
99% identical LTR sequences and an internal sequence
encoding 371 amino acids of the gag protein (Fig. 4c). A
putative TNP2-like transposase gene (GenBank acces-
sion no. AAN37398.1, 3e-99) follows these unique tan-
dem repeats, TATR10s (Tn in Fig. 4b). A signature
sequence such as a terminal inverted repeat (TIR) or
target site duplication (TSD) was not identified due to
significant sequence degeneracy and disruption by the
retrotransposons. The TATR10s consists of three repeat
units, one copy of RepA (42 bp), four copies of RepB
(100 bp), and three copies of RepC (89 bp) (Fig. 5). The
arrays of RepA and RepB are organized in an inverted
form with an approximate 2-kb interval, forming a
putative stem loop structure as shown in Fig. 5. A
hypothetical protein coding gene of 70 amino acids is
predicted between 4,589 and 5,200 bp in the loop
structure based on gene prediction using RICE GAAS

(http://ricegaas.dna.affrc.go.jp/).

Tel3L (pc311K23)

The clone pc311K23 has a 435-bp insert with 218 bp of
telomere repeat sequence. A set of primers, one from a
degenerate telomere repeat and the other from a unique
sequence, amplified a distinctly dominant band that was
mapped at the terminal end of the long arm of

Fig. 3 Schematic
representation of the Tel7L
sequence. a Dotplot shows the
appearance of tandem repeats,
TATR7, next to the telomere
stretch. b BLAST revealed that
two elements (speckled and
shaded boxes) are nested
insertions into the TATR7.
c The unclassified element
(speckled box) shows significant
similarity (85%) with several
rice genome sequences, such as
GenBank accession no.
AE017070 inserted into
TATR7, and a RIRE9 element
(shaded box) is a nested
insertion into the unclassified
element. d A few hundred
members of the RIRE9 element
occur in rice genome. Two
other members and a part of the
original RIRE9 (668...3520)
show 98% sequence identity
with unique flanking 5-bp TSD
sequences. The positions of
corresponding nucleotide
sequences are represented as
white numbers in the gray boxes
and their GenBank accession
numbers are shown at the right.
The RIRE9 has a 4-bp inverted
terminal repeat beginning with
TGAC and ending with GTCA
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chromosome 3 (Tel3L). The sequence (219–435 bp)
preceding the telomere array showed significant se-
quence similarity (93%) with two uncharacterized rice
sequences (GenBank accession nos. AP004673 and
AP005187) that are not telomeric (Fig. 6).

Tel2S (pc098E15)

The pc098E15 clone (insert size: 895 bp) contains a 223-
bp array of telomere repeats (Table 1). The remainder of
the sequence showed significant sequence similarity
(90%) with a full-length expressed sequence tag (EST;
GenBank accession no. AK108592, 1–595 bp) that is a
functionally unknown gene on chromosome 7 (Gen-
Bank accession no. AP005199). A set of primers
designed from the degenerate telomere stretch and from
the redundant sequence of pc098E15 amplifies a dis-
tinctly dominant band which was mapped to the termi-
nal end of chromosome 2 (Tel2S). This region has been

Fig. 4 Sequence annotation
and elucidation of TATR10s in
the Tel10S clone. a MIROPEAT

output shows tandem and
inverted repeats (TATR10s).
b Sequence annotation reveals
that two elements, a
retrotransposon (LTR) and a
transposable element (Tn), are
followed by the TATR10s. The
putative TNP2-like transposase
gene is deduced, and their
coding regions are denoted on
the Tn. c Complete structure of
a RIRE3-like LTR
retrotransposon was found in
the rice genome sequence,
GenBank accession no.
AL662960 (136,822...146,841).
The retrotransposon contains a
total of 10,020 bp with a 99%
identical 3,165-bp LTR and
encodes a 371-amino acid gag
protein in the 3,690-bp internal
sequence

Fig. 5 Stem loop structure of Tel10S and the sequence of
TATR10s. The TATR10s arrays, an inverted array of one copy
of repeat A (42 bp) and four copies of repeat B (100 bp), occurred
next to the telomere stretch. The inverted array of tandem repeats
resembles a stem loop structure. Another tandem repeat array,
three copies of repeat C, occurred inside the loop. The original
sequence position of tandem repeats in TATR10s is at on the right
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recently uncovered and integrated into the end of the
short arm of chromosome 2 by the Japanese Rice
Genome Program (RGP; GenBank accession no.
AP006851) (Fig. 6).

Tel10L (pb027O22)

Clone pb027O22 (insert size: 2,257 bp) contains a 603-
bp stretch of telomere repeat sequence (Table 1). The
remaining sequence showed a significant sequence simi-
larity (approx. 85%) with part of the expressed poly-
protein gene, the gag-pol precursor of a RIRE2
(GenBank accession no. P0572D06.6: 1,421–2,046 bp).
The LTR sequence of the retrotransposon was not
identified in the sequence of pb027O22 (Fig. 6). This
clone mapped at the terminal end of the long arm of
chromosome 10 (Tel10L). Difficulties in mapping this
clone because of the repetitive sequence following the
telomere repeats were overcome by applying a primer
set, one from the degenerate telomere repeat and one
from the repetitive subtelomeric sequence. Based on
several rounds of experiments, the primer set 10L pro-
vides dominant polymorphism (Table 2).

Discussion

Genetic mapping of telomere clones

The TrsA (350 bp, GenBank no. D1453; Ohtsubo et al.
1994) was positioned by FISH on the ends of the long
arms of chromosomes 11L and 12L in japonica rice and
on eight chromosomal ends in indica rice (Ohmido and
Fukui 1997; Ohmido et al. 2000, 2001). Three telomere-
associated sequences, GenBank accession nos. D16335
(101 bp), D16336 (278 bp), and D16337 (313 bp), were
mapped on chromosomes 5S, 12S, and 11L, respec-
tively, in japonica rice (Ashikawa et al. 1994). The

D16336 sequence was mapped on chromosome 11S in
the Kasalath (indica) genome with a non-allelic form
located on chromosome 12S in the Nipponbare (japon-
ica) genome. However, none of these maps provide exact
sequence information in terms of telomere repeat
sequences as do the seven telomere-associated clones
identified in this study. Intensive efforts were expended
to develop polymorphic STS markers using the
sequences of telomere clones. Three of these markers,
10SA, 7LA, and 7LB, were designed from chromosome-
specific telomere-associated tandem repeats (TATR10s
and TATR7). Other markers, for 2S, 3L and 10L were
obtained by using one primer designed from the
degenerate telomere arrays and the other from the
subtelomere sequence. All of the STS markers analyzed
were inherited in a dominant manner in Nipponbare (O.
sativa ssp. japonica) and null in Kasalath (O. sativa ssp.
indica). An STS survey with additional japonica and
indica germplasm will help to clarify the divergent
presence of the telomere-associated sequences between
these subspecies.

Sequence characteristics of telomere-associated
sequences

The unique chromosome-specific telomere-associated
tandem repeats TATR7 and TATR10s—in the Tel7L
and Tel10S clones, respectively—are interrupted by
other transposons such as RIRE3 and RIRE9 that are
dispersed into several hundreds of copies throughout the
rice genome. Polymorphic subtelomere regions have
been shown to serve as hot spots for the nested insertion
of non-LTR retroelements, such as long interspersed
nucleotide elements (LINEs) and short interspersed
nucleotide elements (SINEs), as in the Trypanosoma
brucei (Bringaud et al. 2002) and Chlorella genomes
(Higashiyama et al. 1997; Noutoshi et al. 1998). The
accumulation of transposable elements in subtelomere
regions has been postulated to account for both chro-
mosome stability and genome rearrangements (Zhang
and Peterson 1999; Bringaud et al. 2002; Lonnig and
Saedler 2002; Barry et al. 2003). FISH analyses using
telomere clones Tel10S and Tel7L revealed strong

Fig. 6 Illustration of four telomeric clones without a unique TATR
sequence. The telomere stretches are presented on the left as blue
boxes for each clone. Sequences following the telomere stretch
(white boxes) are represented based on the rice homologous
sequence in or following each box
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hybridization on many chromosomal regions. Our data
based on sequence and FISH analyses showed that the
rice subtelomere regions also contain various transpo-
sons.

An interesting point is the occurrence of an intact
EST sequence adjacent to the telomere array in
pc098E15 (Fig. 6). This sequence showed 90% similarity
with the 5¢ region of a 2,284 bp full-length EST (one of
the 28 K full-length cDNA clones: GenBank accession
no. AK108592, 1–595 bp). This non-telomeric EST is
located as a single exon gene on chromosome 7 (Gen-
Bank accession no. AP005199.3: gene no. P0627E10.30)
and has not been functionally characterized (Kikuchi
et al. 2003). Based on the sequence information of the
Japanese RGP (GenBank accession no. AP006851),
the end of the short arm of chromosome 2 contains the
complete sequence of the 2,284-bp full-length EST. An
expressed polyprotein gene, the gag-pol precursor of a
retrotransposon RIRE2, is followed by a telomere re-
peat array in pb027O22 (Fig. 6). A similar organization
was also found in the telomere region of Arabidopsis of
the short arm of chromosome 1 where an expressed gene
sequence without an intron (GenBank accession no.
At1g81020) is followed by a telomere repeat array,
suggesting that this may be one mechanism for main-
taining telomere structure in plants.

Sequence characteristics of TATR7 and TATR10s

Both novel telomere-associated repeats TATR10s and
TATR7 contained many poly-adenylation signal se-
quences, strong stop codon sequences, and polyA tail-
like sequences, all of which are characteristics of SINE
and LINE elements. However, no similarity was found
with classified elements. Subtelomeric repeats have been
shown to confer a capacity for gene diversification,
especially for ‘‘contingency’’ (virulence factor) genes,
which have very important roles in parasite and in
mammalian host genomes (Chiurillo et al. 1999, 2000,
2002a, 2002b; del Portillo et al. 2001; Scherf et al. 2001;
Barry et al. 2003). The TATRs are interrupted by sub-
sequent insertions of retrotransposons or transposable
elements. Transposons are able to mediate large-scale
genome reorganization by virtue of their ability to in-
duce chromosomal rearrangements such as deletions,
duplications, inversions, reciprocal translocations (re-
viewed in Zhang and Peterson 1999; Lonnig and Saedler
2002), and small-scale gene evolution (Song et al. 1998;
Witte et al. 2001; Bringaud et al. 2002). The TATR7
sequences appear to be located at both ends of chro-
mosome 7 and seem to be dispersed in the large region
because it is interrupted by other transposons. The
presence of TATR7 at both ends of chromosome 7
might have occurred by transposon-mediated recombi-
nation between the ends. Such a feature has also been
observed on the ends of Arabidopsis chromosome 5 in
which 700 bp of unique telomere-associated repeats
have been identified (Kotani et al. 1999).

The most probable function of repetitive subtelomere
sequences is to prevent telomere shortening, such as in the
case of telomerase activity loss (Lundblad and Blackburn
1993). The formation of telomere loops (T-loops) is one
of the broadly known chromosomal end features that
protects against degradation of telomere ends. Loops are
created by tucking G-overhangs (3¢ telomeric single-
strand overhangs) back into the duplex region of telo-
meres through interactions with TRF2 (Stansel et al.
2001). The various sizes of the T-loops, which range from
1 kb to 25 kb, are found in many organisms and in vitro
(Murti and Prescott 1999; Munoz-Jordan et al. 2001;
Stansel et al. 2001). T-looping controls gene activation in
yeast (de Bruin et al. 2001). However, no G-overhangs
have been identified in some of the chromosome ends of
Arabidopsis by primer extension/nick translation (PENT)
assays, implying that two distinct telomere architectures
exist in plants (Riha et al. 2000). The folding loop struc-
ture has been detected in rice chromosome ends based on
a high-resolution fiber FISH study using a TrsA subtel-
omeric sequence (Ohmido et al. 2001). The subtelomeric
repeat sequence of Tel10S has the potential to form a stem
loop structure such as the one shown in Fig. 5, which
resembles T-loops. If a chromosome end does not contain
the G-overhangs, as reported by Riha et al. (2000), the
stem loop structure may function as a backupmechanism
for protecting the end from degradation. The telomere
repeat can be elongated by homologous recombination in
the yeast cell without telomerase, and tens of kilobases of
subtelomeric repeats can be rapidly amplified by unequal
crossovers, which has also been observed in non-homol-
ogous recombination. These large blocks of tandem ar-
rays of subtelomeric sequences may help stabilize the
telomeres by promoting a heterochromatin-like structure
(reviewed in McEachern et al. 2000; Kojima et al. 2002).

Subtelomeric sequence as an identity for homologous
chromosome pairing

None of the TATRs identified in this study showed
significant similarity with the known rice subtelomere
repeat, TrsA1. The complex structure of subtelomere
regions with various units of tandem or interspersed
repeats has been shown to represent chromosome iden-
tity in several mammalian and lower eukaryotic organ-
isms (Higashiyama et al. 1997; Myler et al. 1999; Kojima
et al. 2002; Sunkin et al. 2002). In plant genomes, very
little information on subtelomere sequence is available
(Richards et al. 1992) compared with the abundance of
data obtained from numerous functional studies with
telomeres and related proteins (Riha et al. 2000, 2001;
Yu et al. 2000; Chen et al. 2001; Gallego and White
2001; Bundock and Hooykaas 2002; Riha and Shippen
2003). The two TATRs found on chromosomes 7 and 10
showed totally different and unique repeat sequences.
Chromosome 7 represented symmetric ends, while the
end of the short arm of chromosome 10 showed a stem
loop like-structure, as discussed above. GC composition

475



in the subtelomere sequence showed quite distinctive
and biased distribution, and the sequence units of the
degenerate telomere repeat array were distinctive to each
telomere clone. These unique features may contribute to
chromosomal identity in the pairing of homologous
chromosomes during meiosis and mitosis. The sequence
information obtained in this study will be used in future
investigations to identify BAC and PAC clones proximal
to the subtelomere physical gap to help complete the
total rice genome sequence. This may provide us with a
further understanding of chromosomal structure in
terms of telomere function.
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