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ABSTRACT: For nanomaterials, surface chemistry can dictate fundamental material
properties, including charge-carrier lifetimes, doping levels, and electrical mobilities. In
devices, surface defects are usually the key limiting factor for performance, particularly in solar-
energy applications. Here, we develop a strategy to uniformly and selectively passivate defect
sites in semiconductor nanomaterials using a vapor-phase process termed targeted atomic
deposition (TAD). Because defects often consist of atomic vacancies and dangling bonds with
heightened reactivity, we observe—for the widely used p-type cathode nickel oxide—that a
volatile precursor such as trimethylaluminum can undergo a kinetically limited selective
reaction with these sites. The TAD process eliminates all measurable defects in NiO, leading to
a nearly 3-fold improvement in the performance of dye-sensitized solar cells. Our results
suggest that TAD could be implemented with a range of vapor-phase precursors and be
developed into a general strategy to passivate defects in zero-, one-, and two-dimensional
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B INTRODUCTION

Semiconductor nanomaterials, including zero-dimensional
(OD) nanocrystals, one-dimensional (1D) nanowires, and
two-dimensional (2D) nanosheets, have received widespread
attention for their unique physical properties, which lead to
applications in catalysis, energy harvesting,2 energy storage,3
and sensing," among others. The high surface-to-volume ratios
and interfacial areas cause the surface to strongly influence the
properties of both single particles and assembled materials. For
instance, capping ligands on 0D quantum dots’ (QDs) are
regularly used to improve the electrical mobility® and
photovoltaic device performance”® of QD devices. In 1D
nanowires, passivating wide-band-gap shells are often grown to
reduce surface recombination.” For 2D materials such as
graphene and MoS,, the doping level, mobility, and charge-
carrier lifetime are known to be strongly dependent on single-
site and line defects.'”~"> General strategies to passivate defects
in these materials are needed to realize their potential in solar
energy applications."

Here, we characterize a process termed targeted atomic
deposition (TAD) for the passivation of defects in the
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commonplace but often problematic material nickel oxide
(NiO). A wide-band-gap p-type semiconductor, NiO is used as
a hole-transport and electron-blocking layer in energy-related
devices, including electrochromic windows,'* batteries,"®
electrocatalytic water-splitting systems,lé organic photovol-
taics,'” organohalide perovskites,18 and p-type dye-sensitized
solar cells (DSSCs)."*~*' Depending on the application, NiO is
used as a dense thin film or as nanoparticles or nanoplatelets'’
assembled into a mesoporous structure. It is well-known to
have a high density of nickel (Ni) vacancies,' " giving rise to
the p-type doping, gray-to-black color, and electrochromic
behavior of the material.”**** In DSSC devices, NiO typically
produces power conversion efficiencies several times lower than
those of analogous devices using TiO,.”> The low performance
is attributable to a high defect density” and low electrical
mobility, which lead to high rates of surface-mediated
recombination.”® Previous work to improve NiO has shown
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only moderate success, including increased mobility through
morphology,'” reduced recombination from higher crystal-
linity,””** overlayers from atomic layer deposition (ALD)* or
solution-phase deposition,” and lithium doping to fill trap
states.”” However, defects still consistently limit the perform-
ance of the material.”®

We used TAD to passivate defect sites in NiO by taking
advantage of a kinetically limited, vapor-phase reaction in which
the most reactive sites on the material’s surface—the defect
sites—are selectively passivated with aluminum (Al). Highly
reactive oxygen (O) dangling bonds adjacent to Ni vacancies
selectively react with trimethylaluminum (TMA), as shown in
Figure 1a, and the passivation of these sites results in a nearly 3-
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Figure 1. Selective vapor-phase deposition of Al on NiO. (a) Left:
Schematic representation of a single Ni vacancy on the NiO surface.
Right: Schematic representation of the TAD process, yielding site-
selective passivation of the vacancy defect through a kinetically
controlled reaction with TMA, forming Al(OH),. Images depict Ni
(blue), O (red), Al (green), C (black), and H (gray) atoms. (b)
Normalized Al content, determined by the XPS Al/Ni weight percent
ratio, as a function of the deposition temperature for a single
deposition cycle on nanoplatelet NiO films (black squares). Dashed
lines represent separate linear fits to data above and below 120 °C. (c)
Relative Al content for ALD (red circles) and for TAD (black squares)
as a function of the number of deposition cycles. All values are relative
to the signal from one 200 °C cycle, and dashed lines represent linear
fits to the data. (d) EDS STEM mapping of an ultrathin porous NiO
nanoplatelet showing maps of Ni (red), O (blue), and Al (green)
following two cycles of TAD. All scale bars: 8 nm.

fold improvement in the performance of DSSC devices. The
results suggest that TAD could be developed into a universal
strategy to passivate defects in 0D, 1D, and 2D'? nanomaterials
by exploiting the selective reactivity of defects with high-energy,
vapor-phase precursors.

Additive vapor-phase deposition processes, including chem-
ical vapor deposition, molecular beam epitaxy, and ALD, are
regularly used in the fabrication of high-performance semi-
conductor devices. These processes are designed for layered or
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thin-film deposition of materials on a broad range of substrates.
TAD is a complementary vapor-phase process optimized for
site-selective modification of substrates rather than additive
deposition, yielding a chemically passivated material. In
technical implementation, TAD is similar to ALD in that
both techniques can be performed in a low-pressure, temper-
ature-controlled chamber by introducing alternating doses of
two precursors. In an ALD process, all thermodynamically
favored reactions react to completion with a vapor-phase
precursor at the sterically accessible sites on a material’s
surface,”’ and tens to hundreds of dosage cycles are used to
build up nanometer-thick films.>*7* In contrast, TAD, as
shown below, is a kinetically limited,>® rather than a
thermodynamically limited, process performed with a small
number of dosage cycles at a temperature below the ALD
process window, typically 150—200 °C for the precursors TMA
and water.”’ TAD takes advantage of temperature-dependent
chemistry that can occur within the first or second kinetically
limited deposition cycles.

B MATERIALS AND METHODS

NiO Paste Preparation. Ni(OH), nanoplatelets, prepared by
literature methods,"” were calcined in air (350 °C; 40 min; humidity
<20%), and a paste was prepared by first mixing NiO (16 g), a-
terpineol (64.9 g), ethanol (63.1 g), and ethyl cellulose [a 45 g (10 wt
% in ethanol) S—15 mPa-s solution combined with a 35 g (10 wt % in
ethanol), 30—50 mPa-s solution] and second homogenizing by horn
sonication, mechanical dispersing, and ball milling.36 Pastes of
spherical NiO nanoparticles (Inframat Advanced Materials) were
prepared following the same paste procedures.

NiO Film Preparation. A mesoporous layer of NiO (~1.6 ym
thickness) was deposited onto fluorine-doped tin oxide (FTO;
Hartford Glass, TEC1S) substrates by spin-casting (Laurell WS-
65S0MZ-23NPP; S s at S00 rpm and 30 s at 1500 rpm) and annealing
in air (450 °C; 40 min; humidity <20%). The active area was then
defined by mechanically removing excess material. Al deposition was
performed in an Ultratech Savannah S200 system using TMA and
water. TAD was performed at 100 °C (10 ms precursor pulses; 10 s
hold; 60 s purge), whereas ALD was performed at 200 °C (20 ms
precursor pulses; 20 s hold; 60 s purge). A portion of these substrates
were annealed in air (450 °C; 40 min; humidity <20%). All
temperature-dependent data sets (e.g, Figures 1b,c and and S3c)
were collected with 10 ms precursor pulses. See Tables S8 and S9 for
deposition details.

Computational Analysis. First-principles calculations on the NiO
surface using density functional theory (DFT) with the Hubbard
correction follow the same approach as that in ref 37. A periodically
repeating and symmetric slab (76-atom cell; 24.10 A thickness; 15 A
vacuum region normal to the surface) is used to model the NiO (111)
surface with octopolar reconstruction. The Ni vacancy and Al doping
were modeled by removing or substituting one Ni atom with an Al
atom in the topmost stoichiometric layer. See the Supporting
Information (SI) for computational details.

Solar-Cell Fabrication. The electrode films were immersed in a
Pl solution (0.3 mM in acetonitrile) overnight, rinsed with
acetonitrile, and dried with N,. Platinum (Pt) counter electrodes
were fabricated by thermal decomposition (380 °C; 30 min; humidity
<20%) of chloroplatinic acid (S mM in 2-propanol) on FTO glass with
a predrilled hole. The counter electrode was sandwiched with the
working electrode using a 25 gm Surlyn gasket in a custom-made heat
press (150 °C; 10 s). The hole was sealed with Surlyn (150 °C; S's). A
7960-like electrolyte (1.0 M 1,3-dimethylimidazolium iodide, iodide
(0.03 M), tert-butylpyridine (0.5 M), and guanidium thiocynanate (0.1
M) in 85:15 (v/v) acetonitrile/valeronitrile] was vacuum-backfilled.
The cell was then sealed (150 °C, S s) with a Surlyn film and a
microscope coverslip. The active area of each electrode was ~0.7 cm?.

DOI: 10.1021/acsami.6b01090
ACS Appl. Mater. Interfaces 2016, 8, 4754—4761


http://pubs.acs.org/doi/suppl/10.1021/acsami.6b01090/suppl_file/am6b01090_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.6b01090/suppl_file/am6b01090_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.6b01090/suppl_file/am6b01090_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.6b01090/suppl_file/am6b01090_si_001.pdf
http://dx.doi.org/10.1021/acsami.6b01090

Characterization. Absorption measurements were performed on
an Agilent Cary S000 spectrometer with an integrating sphere.
Elemental quantification was performed by X-ray photoelectron
microscopy (XPS) with a Kratos Axis Ultra DLD spectrometer. All
XPS data were corrected to the C 1s peak (284.6 eV) and background-
corrected. Because of varying experimental intensities, the Al content
is reported as the ratio of the Al/Ni wt %. Elemental quantification was
also performed by energy-dispersive X-ray spectroscopy (EDS) on a
FEI Helios 600 scanning electron microscope. High-resolution EDS
mapping was obtained with an FEI Tecnai Osiris scanning
transmission electron microscope equipped with a Super-X EDS
system. Drift-corrected scanning transmission electron microscopy
(STEM)—EDS maps were obtained using the Bruker Espirit software
with a spatial resolution of ~0.5 nm. Spectroelectrochemistry (50 mV
steps; 60 s holds) and cyclic voltammetry (20 mV-s™') were performed
on a potentiostat (CH instruments 601d) in acetonitrile with lithium
perchlorate (0.1 M) in a three-electrode configuration (working,
FTO/NiO/treatment; counter, platinum wire; reference, Ag/AgCl).
J—V curves were obtained under back-illumination using a Newport
Oriel 150W class ABB AM1.5G solar simulator calibrated to 1-sun
intensity with a certified reference solar cell (Newport 91150 V) using
a Keithley 2636A sourcemeter (resolution, 1 mV; measure delay, 0.1
s). Incident photon-to-current efficiency (IPCE) measurements were
obtained by illuminating devices with a tungsten lamp (Newport
Instruments) coupled to a spectrometer (Princeton Instruments SP-
2300). Device carrier lifetimes were obtained from Vi decays
(sampling rate, 1 kHz) with a starting illumination of 1 sun and a
shutter response of <1 s.

B RESULTS AND DISCUSSION

Characterizing TAD of Al. We performed a TAD of
alumina, using dosages of TMA and water, on ultrathin
hexagonal nanoplatelets of NiO."” To determine the best
conditions for TAD, we first quantified the extent of Al
deposition after one dosage cycle for temperatures ranging
from 70 to 200 °C using XPS. As shown in Figure 1b, the Al
content increases linearly for temperatures above 120 °C but is
approximately constant at lower temperatures. At all temper-
atures, the estimated deposition is less than one monolayer.
The absence of a high-temperature plateau, which would be
characteristic of a self-limited ALD process,”" combined with
the submonolayer deposition suggests that the chemical
processes occurring in the first cycle are kinetically limited
and qualitatively different from the chemistry in subsequent
cycles. In addition, the presence of a plateau below 120 °C
suggests a unique chemistry in this low-temperature regime.

We selected 100 °C for further development of the TAD
process and compared the results to deposition at 200 °C, a
typical temperature for ALD of aluminum oxide (AlO,). As
shown in Figure lc for one to five cycles on NiO, the Al
content at 100 °C is ~25% of the deposition at 200 °C, which
was separately confirmed by analysis with EDS (Tables S1 and
S2) and SEM. In addition, the spatial uniformity of two cycles
at 100 °C on nanoplatelet NiO was examined by EDS
elemental mapping of Ni, O, and Al by STEM, as displayed in
Figure 1d. The Al map shows uniform deposition across the
particle with a subtle preference for the edges and pores of the
platelets, which is confirmed by EDS line scans (Figure S1).
EDS mapping after deposition at 200 °C showed similar
behavior but substantially more Al (Figure S2). In addition,
temperature-dependent XPS spectra (Figures S3 and S4)
suggest that the chemical nature of the Al species deposited at
100 °C is qualitatively different from that of the species at 200
°C, and the results indicate a preference to form aluminum
hydroxide [Al(OH),] bonded to Ni at lower temperatures and
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AlO,, bonded to Al at higher temperatures (see the SI for an
extended discussion).

Passivation of Optical and Electronic Defect States.
Following a single cycle of TAD, the NiO samples were
markedly bleached, as shown by the dramatic change from dark
gray to off-white in Figure 2a."**® The absorbance of NiO films
was examined as a function of the number of TAD cycles, as
shown in Figure 2b. The bleaching of the film is apparent from
the difference spectra (see the inset), which show two bleach
features. We separately performed spectroelectrochemical
measurements on untreated NiO (Figure SS), and the data
show spectral features similar to those of the TAD-treated NiO.
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Figure 2. Optical and electronic effects of defect passivation: (a)
Optical image of 1.6-um-thick NiO films on glass slides without
treatment (left) and with one TAD cycle (right). Scale bar = 1 cm. (b)
Absorbance spectra of 1.6 um films for untreated NiO (black) and
NiO with one (red), two (green), three (gold), four (blue), and five
(violet) cycles of TAD. Inset: Difference spectra determined by
subtracting the spectrum of the untreated NiO film from the spectra of
the TAD-treated films. (c) Cyclic voltammetry versus Ag/AgCl
potential for films of untreated NiO (green) and single-cycle TAD-
treated NiO (orange) collected with a scan rate of 20 mV-s™ in
acetonitrile with 0.1 M lithium perchlorate. (d) Left: Chemical
capacitance and DOS versus Ag/AgCl potential for films of untreated
NiO (green) and NiO treated with one cycle of TAD (orange). Right:
Difference spectrum (black line) determined by subtracting the spectra
of the TAD-treated films from the spectrum of the untreated NiO film.
The spectrum is well fit to the summation of four Gaussians (dashed
lines) centered at —0.11, 0.23, 0.82, and 1.20 V versus Ag/AgCl.
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This similarity suggests that the defect states passivated by
TAD are the same defect states that §ive rise to the well-known
electrochromism of the material."*’

Cyclic voltammetry was used to further probe the electronic
states that could be responsible for bleaching of the NiO films
by TAD, as shown in Figure 2c. The voltammogram for neat
NiO is not symmetric and shows at least three reversible peaks,
which have previously been assigned to trap states slightly
above the valence band maximum (VBM) and associated with
Ni vacancies.”” * Strikingly, however, these peaks disappear
upon one cycle of TAD, as shown by the symmetric
voltammogram in Figure 2c. Using the cathodic wave, the
data were converted into chemical capacitance and the
equivalent density of states (DOS), as shown in Figure 2d.
For neat NiO, the DOS integrated over the energy range in
Figure 2d yields a value of 4.3 X 10°° cm™, which is in good
agreement with literature values, assuming a porosity of 50% for
the films.”® The TAD-treated NiO shows a substantially lower
DOS and a functional form as expected for a defect-free
semiconductor with a valence band edge at ~0.2 V versus
silver/silver chloride (Ag/AgCl).

The difference spectrum between the DOS for neat and
TAD-treated NiO (right-hand side of Figure 2d) yields the
spectrum of the traps passivated by one cycle of TAD, which is
well fit to the summation of four Gaussian peaks. Integrating
the DOS yields a total trap density of 1.7 X 10* cm™.
Assuming each defect site is passivated by only one Al
complete passivation of these states would require the
equivalent of ~0.1 monolayers, which is consistent with the
submonolayer deposition of the TAD process. These electro-
chemical results, combined with the low deposition rate and
chemical differences between TAD and ALD, suggest that the
TAD process preferentially targets the chemically distinct
defect sites of the material and that nearly complete passivation
is achieved with only a single cycle.

First-Principles Calculations of Ni Vacancy Defects.
We performed first-principles calculations to better understand
the origin of TAD passivation at an atomistic level. The NiO
(111) surface was modeled using DFT with the Hubbard
correction,” which has previously been used to accurately
describe the antiferromagnetic and electronic properties of
NiO, as discussed in ref 37. The Hubbard term is necessary to
account for the strong electron correlation from the partially
filled d orbitals on the Ni atoms. On the basis of our
experimental observations, which are insensitive to different
surface orientations (see below), we hypothesized that the
defect states are most likely to arise from single Ni vacancies in
stoichiometric NiO layers and that these states would be
passivated by the addition of Al As recently demonstrated,””
the (111) surface shows a rich variety of reconstruction phases.
Here, we modeled the most stable phase, the octopolar
reconstruction, and included an atomic Ni vacancy in the first
stoichiometric layer of the surface. As shown by the electron
density isosurface in Figure 3a, the calculation confirms that a
Ni vacancy induces a set of localized electronic states, which
envelop O atoms in the layers directly above and below the Ni
vacancy. Qualitatively, these states can be considered to be the
O dangling bonds resulting from the vacancy. The states give
rise to a broad set of peaks in the DOS approximately 0.4 eV
above the VBM, as shown by the yellow shaded area denoted
by green arrows in Figure 3b. Importantly, the states are
localized near the surface and do not extend deeper into the
bulk, as is apparent from the layer-resolved DOS in Figure 3b.
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Figure 3. First-principles calculations of defect states and passivation
in NiO: (a) Structure of the octopolar NiO (111) surface with a single
Ni vacancy at the position denoted by the green arrow and sphere.
Shown in yellow is the electron density isosurface for the defect states
generated by O dangling bonds associated with the vacancy. The
topmost bilayer is the nonstoichiometric octopolar surface recon-
struction. (b and c¢) Layer-resolved DOS for stoichiometric NiO layers
near the surface showing the results for the vacancy (panel b) and Al
substitution in the vacancy (panel c). Layers are labeled according to
the numbers depicted in panel a, with the vacancy located in layer 2.
All energies are referenced to the VBM of bulk NiO, which is depicted
with the vertical dashed lines. The DOS for bulk NiO is shown by the
gray shaded area. Green arrows and yellow shaded areas in panel b
denote the defect states associated with the vacancy.

To test whether these defect states can be removed with Al, we
performed a second calculation with an Al atom filling the
vacancy. As is apparent from the DOS in Figure 3c, the broad
peaks above the VBM disappear. Qualitatively, the Al atom can
be considered to passivate the O dangling bonds created by the
vacancy. The first-principles calculations are in good agreement
with experimental measurements in Figure 2, reproducing both
the presence of defects above the VBM and passivation with Al
Thus, based on the combination of experimental and first-
principles results, we attribute the experimentally observed
bleaching of NiO films and elimination of defect states upon
TAD treatment to the selective passivation of the O dangling
bonds associated with Ni vacancies.
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Figure 4. Effect of TAD passivation on a p-type DSSC performance: (a) Energy-level schematic (not to scale) for a p-type DSSC utilizing the P1 dye
and I"/I;” electrolyte. The dashed green arrow represents light absorption by P1. The passivated surface states associated with recombination are
shown as red curves, recombination processes as red arrows, and electron (e”) and hole (h*) transfer events as black arrows. (b) Champion J—V
curves under 1 sun illumination for zero (red), one (blue), two (green), and three (orange) cycles of TAD for as-deposited (upper) and 450 °C
postannealed (lower) samples. Inset: 7 for each curve relative to 7, the efficiency of the untreated, zero-cycle sample. (c) Dependence of Vi
(upper) and J, (lower) on the number of TAD cycles for as-deposited (black squares) and postannealed (red circles) samples. (d) Dependence of
Jsc (upper) and Rg (lower) on the number of TAD cycles for as-deposited (black squares) and postannealed (red circles) samples. Error bars in
panels b—d represent standard deviations from sample sizes of >3 and were omitted if comparable in size to the marker symbols.

Performance of TAD-Treated DSSCs. The passivation of
defects in NiO should lead to substantial improvements in the
performance of solar energy devices by reducing or eliminating
charge-carrier recombination facilitated by the defect levels as
well as removing trap-state shunt pathways. Below, we
characterize the improvement in p-type DSSC devices using
the iodide/triodide electrolyte and the P1 organic dye (see the
inset in Figure 4a), a well-studied hole-injecting chromo-
phore.””***~* As depicted in Figure 4a, these DSSC devices
operate by first injecting holes from P1 into the NiO valence
band and second regenerating neutral P1 by electron transfer to
the electrolyte.

TAD-treated films of the NiO nanoplatelets of ~1.6 um
thickness were dye-loaded with P1 and exhibited a vibrant red
color (Figure S6), which confirms that the TAD treatment had

4758

no appreciable impact on the dye loading or light-harvesting
efficiency (LHE) of the films (Figure S7). NiO electrodes with
an area of ~0.7 cm?, which is 2—3-fold larger than previous
literature reports with the P1 chromophore,””*”**~** were
used to minimize the effect of the electrode size on the
measured photovoltaic performance metrics. We fabricated
DSSC devices with zero to five cycles of TAD and with and
without a postanneal at 450 °C prior to dye loading (see Tables
S3—S6 for all photovoltaic device metrics). Current density
versus voltage (J—V) curves under simulated 1 sun illumination
are shown in Figure 4b. Most notable in the J—V curves is the
dramatic increase in the open-circuit voltage (Vo) from 129
mV for neat NiO to a maximum of 294 mV for two cycles of
TAD without a postanneal. This upper value is close to the
theoretical limit of ~300 mV, as given by the difference
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between the valence band edge of NiO and the Nernstian
potential of the electrolyte. IPCE measurements were
performed to confirm that photocurrent production was from
dye sensitization (Figure S7). We also fabricated devices using
commercial NiO nanoparticles and observed the same
improvement (Figure S8), which indicates that the results are
generic and applicable to NiO produced by a range of synthetic
methods and with a variety of crystallographic orientations.

Analysis of the DSSC Device Performance. The trends
in photovoltaic device parameters, including V¢, dark
saturation current density (J), short-circuit current density
(Jsc), and series resistance (Rg) as a function of the number of
TAD cycles, are shown in Figure 4¢,d and reveal two important
aspects of the devices fabricated without a postanneal (black
curves). First, Vi exhibits a maximum at two cycles but then
plateaus and begins to fall at four to five cycles. The increase in
Voc within the first two cycles corresponds well with a 1-2
order of magnitude decrease in ], which then plateaus for
higher cycle numbers. The decrease in ], is well correlated with
a 1-3 order of magnitude increase in the recombination
lifetime of holes in NiO (Figure S9). Second, Js¢ progressively
decreases with the increasing number of TAD cycles, following
an approximately exponential decay with the cycle number. The
changes in Jy are well-correlated with an increase in Rg (Figure
S10), which exhibits an exponential increase with the cycle
number.*'

We attribute the improvement in V¢ at one to two TAD
cycles to a reduction in the recombination rate as a result of
defect passivation. The drop in V¢ at four to five cycles is
likely a result of the low Jsc for high cycle numbers, which
reduces Vo because of a decrease in the ratio of Jsc to J;, as
predicted by the ideal diode equation. In addition, the
exponential decrease of Jsc with the cycle number is attributed
to a decrease in the internal quantum efficiency (IQE) of the
devices because the LHE (Figure S7) of the films is constant
and Jsc is proportional to the product of IQE and LHE. We
hypothesize that the decrease in IQE is primarily caused by a
lowered charge-injection efficiency from P1 into the NiO
valence band as a result of tunneling through additional AlO, or
Al(OH), insulating layers. An exponential dependence of the
rate of charge injection on the layer thickness is a well-known
effect for ALD deposition of insulating shells on metal oxide
nanomaterials.” The decrease in IQE may also partially result
from the reduced efficiency for charge transport through the
film, manifested as an increase in Rg that causes a deleterious
increase in charge-carrier recombination.

For the first two TAD cycles, the postanneal at 450 °C on
average reduces Vo and Rg by 12% and 52% and increases
and Jsc by 5% and 40%, respectively, as is apparent from the
difference between the black and red curves in Figure 4c,d. For
all cycles, the change in Vi relative to the nonannealed sample
is well correlated with the change in J, and similarly the
increase in Jgc for the postannealed samples compared to the
nonannealed samples is correlated with the lower Rg. XPS
spectra collected on the annealed samples (Figures S4 and S11)
indicate that the anneal converts AI[(OH), to AlO,. This result
suggests that the oxide species produced by the postannealing
treatment improves the efficiency of charge transfer at the
surfaces and interfaces compared to the hydroxide species in
nonannealed samples, producing the trade-off of a beneficial
decrease in Ry and a detrimental increase in J;, upon the
postanneal. In addition, it is possible that the anneal drives Al
into the interior of the particles, passivating bulk defects, but an

4759

additional investigation would be necessary to confirm this
hypothesis. Interestingly, the postannealed sample with one
cycle of TAD exhibits the highest 1 sun power conversion (1)
across all devices because the increase in Jgc upon annealing
more than compensates for the relatively small loss in V¢ (see
the inset in Figure 4b).

We also fabricated DSSC devices from NiO treated with a
single deposition cycle at 200 °C (Figure S12 and Table S7).
These devices exhibited a maximum Vi of 135 mV and a
maximum Jgc of 0.038 mA-cm™2 If we assume the 200 °C
single-cycle deposition is similar to an ALD cycle and produces
a monolayer of AlO, coverage, the 97% decrease in Jsc
compared to untreated NiO can be explained by a more than
50% drop in the rate of electron transfer from P1 as a result of
an ~1.5-A-thick tunneling barrier with a barrier height of ~1.6
eV.*> The poor photovoltaic performance following this ALD
treatment highlights the importance of the site-selective
passivation provided by TAD to improve the photovoltaic
properties of nanomaterials without detrimentally altering their
fundamental performance characteristics.

B CONCLUSIONS

Here, we have shown that the TAD process, which uses a
vapor-phase precursor to selectively passivate the chemically
distinct defect sites in nanomaterials, can dramatically improve
the DSSC performance of the ubiquitous solar photocathode
material NiO. We expect that this result will easily be translated
to improvements in other solar-energy devices incorporating
NiO, including organic photovoltaics17 and organohalide
perovskites.'® In addition, we believe that the TAD process
can be developed with a broad range of vapor-phase precursors
and could represent a general strategy to passivate defects sites
in 0D, 1D, and 2D nanomaterials.
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