8 research outputs found

    THE AFTERCLAP OF DEGENERATE CARBON IGNITION REVISITED

    No full text
    L'ignition du carbone et le mode de propagation de la combustion dĂ©cident de maniĂšre critique du sort des Ă©toiles qui dĂ©veloppent des coeurs de carbone/oxygĂšne, c'est-Ă -dire explosion ou implosion. Le processus le plus rapide (dĂ©tonation, conduction ou convection) dĂ©termine la vitesse de propagation du front de combustion. On peut probablement Ă©liminer la formation d'une dĂ©tonation Ă  cause de la petitesse de la surpression gĂ©nĂ©rĂ©e par la combustion Ă  haute densitĂ©. Nous dĂ©montrons qu'aprĂšs une courte durĂ©e de combustion par conduction, un rĂ©gime de convection s'Ă©tablit. Nous en tirons la conclusion que si l'ignition a lieu Ă  densitĂ© suffisamment grande (ρ>5 x 109 g/cc) les captures d'Ă©lectrons et les pertes de neutrino concomitantes causent la rĂ©implosion du coeur de l'Ă©toile.Whether the degenerate C-O cores, with develop in the heart of 4-8 MΞ stars, get fully disrupted or implode into neutron stars depends critically on the results of carbon ignition and on the nature of the propagation of the burning front. The velocity of this front is determined by the fastest of several processes, namely (1) detonation, (2) conductive burning, and (3) convective burning. Detonation can probably be excluded because of the small overpressures resulting from burning at high density. Since conductive burning is estimated to be very slow, the burning front is shown to propagate by convection. We conclude that if ignition occurs at sufficiently high density (ρ > 5 x 109 g/cm3), electron captures and concomitant neutrino losses will then offset the effects of burning and cause the implosion of the core

    Simulation of Astrophysical Fluid Flow

    No full text

    Molecular Aspects of Melatonin Treatment in Tinnitus: A Review

    No full text

    The impact of space experiments on our knowledge of the physics of the universe

    No full text

    Observation of the B+^{+}→ Jψηâ€ČK+^{+} decay

    Get PDF
    International audienceThe B+^{+} → Jψηâ€ČK+^{+} decay is observed for the first time using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of 9 fb−1^{−1}. The branching fraction of this decay is measured relative to the known branching fraction of the B+^{+} → ψ(2S)K+^{+} decay and found to beB(B+→Jψηâ€ČK+)B(B+→ψ(2S)K+)=(4.91±0.47±0.29±0.07)×10−2, \frac{\mathcal{B}\left({B}^{+}\to {J\psi \eta}^{\prime }{K}^{+}\right)}{\mathcal{B}\left({B}^{+}\to \psi (2S){K}^{+}\right)}=\left(4.91\pm 0.47\pm 0.29\pm 0.07\right)\times {10}^{-2}, where the first uncertainty is statistical, the second is systematic and the third is related to external branching fractions. A first look at the J/ψηâ€Č mass distribution is performed and no signal of intermediate resonances is observed.[graphic not available: see fulltext
    corecore