952 research outputs found

    Simulating grazing beef and sheep systems

    Get PDF
    CONTEXT Ruminant livestock make an important contribution to global food security by converting feed that is unsuitable for human consumption into high value food protein, demand for which is currently increasing at an unprecedented rate because of increasing global population and income levels. Factors affecting production efficiency, product quality, and consumer acceptability, such as animal fertility, health and welfare, will ultimately define the sustainability of ruminant production systems. These more complex systems can be developed and analysed by using models that can predict system responses to environment and management. OBJECTIVE We present a framework that dynamically models, using a process-based and mechanistic approach, animal and grass growth, nutrient cycling and water redistribution in a soil profile taking into account the effects of animal genotype, climate, feed quality and quantity on livestock production, greenhouse gas emissions, water use and quality, and nutrient cycling in a grazing system. METHODS A component to estimate ruminant animal growth was developed and integrated with the existing components of the SPACSYS model. Intake of herbage and/or concentrates and partitioning of the energy and protein contained in consumed herbage and/or concentrates were simulated in the component. Simulated animal growth was validated using liveweight data from over 200 finishing beef cattle and 900 lambs collected from the North Wyke Farm Platform (NWFP) in southwest England, UK, between 2011 and 2018. Annual nitrous oxide (N2O), ammonia, methane and carbon dioxide emissions from individual fields were simulated based on previous validated parameters. RESULTS AND CONCLUSIONS A series of statistical indicators demonstrated that the model could simulate liveweight gain of beef cattle and lamb. Simulated nitrogen (N) cycling estimated N input of 190 to 260 kg ha−1, of which 37–61% was removed from the fields either as silage or animal intake, 15–26% was lost through surface runoff or lateral drainage and 1.14% was emitted to the atmosphere as N2O. About 13% of the manure N applied to the NWFP and excreta N deposited at grazing was lost via ammonia volatilisation. SIGNIFICANCE The extended model has the potential to investigate the responses of the system on and consequences of a range of agronomic management and grazing strategies. However, modelling of multi-species swards needs to be validated including the dynamics of individual species in the swards, preferential selection by grazing animals and the impact on animal growth and nutrient flows

    Contralateral dissociation between neural activity and cerebral blood volume during recurrent acute focal neocortical seizures

    Get PDF
    OBJECTIVE: Whether epileptic events disrupt normal neurovascular coupling mechanisms locally or remotely is unclear. We sought to investigate neurovascular coupling in an acute model of focal neocortical epilepsy, both within the seizure onset zone and in contralateral homotopic cortex. METHODS: Neurovascular coupling in both ipsilateral and contralateral vibrissal cortices of the urethane-anesthetized rat were examined during recurrent 4-aminopyridine (4-AP, 15 mm, 1 μl) induced focal seizures. Local field potential (LFP) and multiunit spiking activity (MUA) were recorded via two bilaterally implanted 16-channel microelectrodes. Concurrent two-dimensional optical imaging spectroscopy was used to produce spatiotemporal maps of cerebral blood volume (CBV). RESULTS: Recurrent acute seizures in right vibrissal cortex (RVC) produced robust ipsilateral increases in LFP and MUA activity, most prominently in layer 5, that were nonlinearly correlated to local increases in CBV. In contrast, contralateral left vibrissal cortex (LVC) exhibited relatively smaller nonlaminar specific increases in neural activity coupled with a decrease in CBV, suggestive of dissociation between neural and hemodynamic responses. SIGNIFICANCE: These findings provide insights into the impact of epileptic events on the neurovascular unit, and have important implications both for the interpretation of perfusion-based imaging signals in the disorder and understanding the widespread effects of epilepsy. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here

    Strong-field terahertz-optical mixing in excitons

    Get PDF
    Driving a double-quantum-well excitonic intersubband resonance with a terahertz (THz) electric field of frequency \omega_{THz} generated terahertz optical sidebands \omega=\omega_{THz}+\omega_{NIR} on a weak NIR probe. At high THz intensities, the intersubband dipole energy which coupled two excitons was comparable to the THz photon energy. In this strong-field regime the sideband intensity displayed a non-monotonic dependence on the THz field strength. The oscillating refractive index which gives rise to the sidebands may be understood by the formation of Floquet states, which oscillate with the same periodicity as the driving THz field.Comment: 4 pages, 6 figure

    Spin interactions and switching in vertically tunnel-coupled quantum dots

    Full text link
    We determine the spin exchange coupling J between two electrons located in two vertically tunnel-coupled quantum dots, and its variation when magnetic (B) and electric (E) fields (both in-plane and perpendicular) are applied. We predict a strong decrease of J as the in-plane B field is increased, mainly due to orbital compression. Combined with the Zeeman splitting, this leads to a singlet-triplet crossing, which can be observed as a pronounced jump in the magnetization at in-plane fields of a few Tesla, and perpendicular fields of the order of 10 Tesla for typical self-assembled dots. We use harmonic potentials to model the confining of electrons, and calculate the exchange J using the Heitler-London and Hund-Mulliken technique, including the long-range Coulomb interaction. With our results we provide experimental criteria for the distinction of singlet and triplet states and therefore for microscopic spin measurements. In the case where dots of different sizes are coupled, we present a simple method to switch on and off the spin coupling with exponential sensitivity using an in-plane electric field. Switching the spin coupling is essential for quantum computation using electronic spins as qubits.Comment: 13 pages, 9 figure

    Seizure epicenter depth and translaminar field potential synchrony underlie complex variations in tissue oxygenation during ictal initiation

    Get PDF
    Whether functional hyperemia during epileptic activity is adequate to meet the heightened metabolic demand of such events is controversial. Whereas some studies have demonstrated hyperoxia during ictal onsets, other work has reported transient hypoxic episodes that are spatially dependent on local surface microvasculature. Crucially, how laminar differences in ictal evolution can affect subsequent cerebrovascular responses has not been thus far investigated, and is likely significant in view of possible laminar-dependent neurovascular mechanisms and angioarchitecture. We addressed this open question using a novel multi-modal methodology enabling concurrent measurement of cortical tissue oxygenation, blood flow and hemoglobin concentration, alongside laminar recordings of neural activity, in a urethane anesthetized rat model of recurrent seizures induced by 4-aminopyridine. We reveal there to be a close relationship between seizure epicenter depth, translaminar LFP synchrony and tissue oxygenation during the early stages of recurrent seizures, whereby deep layer seizures are associated with decreased cross laminar synchrony and prolonged periods of hypoxia, and middle layer seizures are accompanied by increased cross-laminar synchrony and hyperoxia. Through comparison with functional activation by somatosensory stimulation and graded hypercapnia, we show that these seizure-related cerebrovascular responses occur in the presence of conserved neural-hemodynamic and blood flow-volume coupling. Our data provide new insights into the laminar dependency of seizure-related neurovascular responses, which may reconcile inconsistent observations of seizure-related hypoxia in the literature, and highlight a potential layer-dependent vulnerability that may contribute to the harmful effects of clinical recurrent seizures. The relevance of our findings to perfusion-related functional neuroimaging techniques in epilepsy are also discussed

    The Casimir force and the quantum theory of lossy optical cavities

    Get PDF
    We present a new derivation of the Casimir force between two parallel plane mirrors at zero temperature. The two mirrors and the cavity they enclose are treated as quantum optical networks. They are in general lossy and characterized by frequency dependent reflection amplitudes. The additional fluctuations accompanying losses are deduced from expressions of the optical theorem. A general proof is given for the theorem relating the spectral density inside the cavity to the reflection amplitudes seen by the inner fields. This density determines the vacuum radiation pressure and, therefore, the Casimir force. The force is obtained as an integral over the real frequencies, including the contribution of evanescent waves besides that of ordinary waves, and, then, as an integral over imaginary frequencies. The demonstration relies only on general properties obeyed by real mirrors which also enforce general constraints for the variation of the Casimir force.Comment: 18 pages, 6 figures, minor amendment

    Normal and Lateral Casimir Forces between Deformed Plates

    Get PDF
    The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study this geometry dependence in the case of two deformed metal plates, we use a path integral quantization of the electromagnetic field which properly treats the many-body nature of the interaction, going beyond the commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary deformations we provide an analytical result for the deformation induced change in Casimir energy, which is exact to second order in the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a corrugated plate shows an interesting crossover as a function of the ratio of the mean platedistance H to the corrugation length \lambda: For \lambda \ll H we find a slower decay \sim H^{-4}, compared to the H^{-5} behavior predicted by PWS which we show to be valid only for \lambda \gg H. The amplitude of the lateral force between two corrugated plates which are out of registry is shown to have a maximum at an optimal wavelength of \lambda \approx 2.5 H. With increasing H/\lambda \gtrsim 0.3 the PWS approach becomes a progressively worse description of the lateral force due to many-body effects. These results may be of relevance for the design and operation of novel microelectromechanical systems (MEMS) and other nanoscale devices.Comment: 20 pages, 5 figure
    • …
    corecore