16 research outputs found

    A large-scale analysis of genetic variants within putative miRNA binding sites in prostate cancer

    No full text
    Prostate cancer is the second most common malignancy among men worldwide. Genome-wide association studies have identified 100 risk variants for prostate cancer, which can explain approximately 33% of the familial risk of the disease. We hypothesized that a comprehensive analysis of genetic variations found within the 3' untranslated region of genes predicted to affect miRNA binding (miRSNP) can identify additional prostate cancer risk variants. We investigated the association between 2,169 miRSNPs and prostate cancer risk in a large-scale analysis of 22,301 cases and 22,320 controls of European ancestry from 23 participating studies. Twenty-two miRSNPs were associated (P<2.3Ă—10(-5)) with risk of prostate cancer, 10 of which were within 7 genes previously not mapped by GWAS studies. Further, using miRNA mimics and reporter gene assays, we showed that miR-3162-5p has specific affinity for the KLK3 rs1058205 miRSNP T-allele, whereas miR-370 has greater affinity for the VAMP8 rs1010 miRSNP A-allele, validating their functional role.Findings from this large association study suggest that a focus on miRSNPs, including functional evaluation, can identify candidate risk loci below currently accepted statistical levels of genome-wide significance. Studies of miRNAs and their interactions with SNPs could provide further insights into the mechanisms of prostate cancer risk.Shane Stegeman, Ernest Amankwah, Kerenaftali Klein, Tracy A. O'Mara, Donghwa Kim ... Wayne D. Tilley ... et al

    Association of maternal prenatal smoking GFI1-locus and cardiometabolic phenotypes in 18,212 adults.

    Get PDF
    Background: DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring&#39;s adult cardio-metabolic health.Methods: We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n= 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP).Findings: Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P &lt; 0.012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 x 10(-7) &lt; P &lt; 0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and cg18146737 was associated with decreased BMI and WC (5 x 10(-8) &lt; P &lt; 0.001). Lower DNA methylation at all the CpGs was consistently associated with higher TG levels.Interpretation: Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. Fund: European Union&#39;s Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH. (c) 2018 The Authors. Published by Elsevier B.V

    E. Heer, professeur en physique nucléaire; Recteur de l'Université 1973 à 1977

    Get PDF
    E. Heer, professeur en physique nucléaire; Recteur de l'Université 1973 à 197

    Genome-wide association study of prostate cancer-specific survival

    No full text
    Free to read\ud \ud BACKGROUND: \ud \ud Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical.\ud \ud METHODS: \ud \ud We performed a genome-wide survival analysis of cause-specific death in 24,023 prostate cancer patients (3,513 disease-specific deaths) from the PRACTICAL and BPC3 consortia. Top findings were assessed for replication in a Norwegian cohort (CONOR).\ud \ud RESULTS: \ud \ud We observed no significant association between genetic variants and prostate cancer survival.\ud \ud CONCLUSIONS: \ud \ud Common genetic variants with large impact on prostate cancer survival were not observed in this study.\ud \ud IMPACT: \ud \ud Future studies should be designed for identification of rare variants with large effect sizes or common variants with small effect sizes
    corecore