452 research outputs found

    Transaortic gunshot wound through perivisceral segment successfully managed by placement of thoracic stent graft

    Get PDF
    We describe a 36-year-old woman who presented to our facility after sustaining a gunshot wound to the epigastric region. The gunshot resulted in injury to the left lobe of the liver and the twelfth thoracic vertebral body as well as in a through- and-through injury to the abdominal aorta at the level of the celiac axis. The vascular injury was managed successfully by placement of a thoracic stent graft with coverage of the celiac axis. This case demonstrates the feasibility of managing this uncommon injury with endovascular techniques. (J Vasc Surg Cases and Innovative Techniques 2018;4:24-6.

    Melatonin: A Cutaneous Perspective on its Production, Metabolism, and Functions

    Get PDF
    Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. Although melatonin is best known to regulate circadian rhythmicity and lower vertebrate skin pigmentation, the full spectrum of functional activities of this free radical-scavenging molecule, which also induces/promotes complex antioxidative and DNA repair systems, includes immunomodulatory, thermoregulatory, and antitumor properties. Because this plethora of functional melatonin properties still awaits to be fully appreciated by dermatologists, the current review synthesizes the main features that render melatonin a promising candidate for the management of several dermatoses associated with substantial oxidative damage. We also review why melatonin promises to be useful in skin cancer prevention, skin photo- and radioprotection, and as an inducer of repair mechanisms that facilitate the recovery of human skin from environmental damage. The fact that human skin and hair follicles not only express functional melatonin receptors but also engage in substantial, extrapineal melatonin synthesis further encourages one to systematically explore how the skin's melatonin system can be therapeutically targeted in future clinical dermatology and enrolled for preventive medicine strategies

    Products of Vitamin D3 or 7-Dehydrocholesterol Metabolism by Cytochrome P450scc Show Anti-Leukemia Effects, Having Low or Absent Calcemic Activity

    Get PDF
    BACKGROUND. Cytochrome P450scc metabolizes vitamin D3 to 20-hydroxyvitamin D3 (20(OH)D3) and 20,23(OH)2D3, as well as 1-hydroxyvitamin D3 to 1a,20-dihydroxyvitamin D3 (1,20(OH)2D3). It also cleaves the side chain of 7-dehydrocholesterol producing 7-dehydropregnenolone (7DHP), which can be transformed to 20(OH)7DHP. UVB induces transformation of the steroidal 5,7-dienes to pregnacalciferol (pD) and a lumisterol-like compounds (pL). METHODS AND FINDINGS. To define the biological significance of these P450scc-initiated pathways, we tested the effects of their 5,7-diene precursors and secosteroidal products on leukemia cell differentiation and proliferation in comparison to 1a,25-dihydroxyvitamin D3 (1,25(OH)2D3). These secosteroids inhibited proliferation and induced erythroid differentiation of K562 human chronic myeloid and MEL mouse leukemia cells with 20(OH)D3 and 20,23(OH)2D3 being either equipotent or slightly less potent than 1,25(OH)2D3, while 1,20(OH)2D3, pD and pL compounds were slightly or moderately less potent. The compounds also inhibited proliferation and induced monocytic differentiation of HL-60 promyelocytic and U937 promonocytic human leukemia cells. Among them 1,25(OH)2D3 was the most potent, 20(OH)D3, 20,23(OH)2D3 and 1,20(OH)2D3 were less active, and pD and pL compounds were the least potent. Since it had been previously proven that secosteroids without the side chain (pD) have no effect on systemic calcium levels we performed additional testing in rats and found that 20(OH)D3 had no calcemic activity at concentration as high as 1 µg/kg, whereas, 1,20(OH)2D3 was slightly to moderately calcemic and 1,25(OH)2D3 had strong calcemic activity. CONCLUSIONS. We identified novel secosteroids that are excellent candidates for anti-leukemia therapy with 20(OH)D3 deserving special attention because of its relatively high potency and lack of calcemic activity.National Institutes of Health (R01A052190

    20-Hydroxycholecalciferol, Product of Vitamin D3 Hydroxylation by P450scc, Decreases NF-κB Activity by Increasing IκBα Levels in Human Keratinocytes

    Get PDF
    The side chain of vitamin D3 is hydroxylated in a sequential manner by cytochrome P450scc (CYP11A1) to form 20-hydroxycholecalciferol, which can induce growth arrest and differentiation of both primary and immortalized epidermal keratinocytes. Since nuclear factor-κB (NF-κB) plays a pivotal role in the regulation of cell proliferation, differentiation and apoptosis, we examined the capability of 20-hydroxycholecalciferol to modulate the activity of NF-κB, using 1,25-dihydroxycholecalciferol (calcitriol) as a positive control. 20-hydroxycholecalciferol inhibits the activation of NFκB DNA binding activity as well as NF-κB-driven reporter gene activity in keratinocytes. Also, 20-hydroxycholecalciferol induced significant increases in the mRNA and protein levels of the NF-κB inhibitor protein, IκBα, in a time dependent manner, while no changes in total NF-κB-p65 mRNA or protein levels were observed. Another measure of NF-κB activity, p65 translocation from the cytoplasm into the nucleus was also inhibited in extracts of 20-hydroxycholecalciferol treated keratinocytes. Increased IκBα was concomitantly observed in cytosolic extracts of 20-hydroxycholecalciferol treated keratinocytes, as determined by immunoblotting and immunofluorescent staining. In keratinocytes lacking vitamin D receptor (VDR), 20-hydroxycholecalciferol did not affect IκBα mRNA levels, indicating that it requires VDR for its action on NF-κB activity. Comparison of the effects of calcitrol, hormonally active form of vitamin D3, with 20-hydrocholecalciferol show that both agents have a similar potency in inhibiting NF-κB. Since NF-κB is a major transcription factor for the induction of inflammatory mediators, our findings indicate that 20-hydroxycholecalciferol may be an effective therapeutic agent for inflammatory and hyperproliferative skin diseases

    Geldanamycin-induced osteosarcoma cell death is associated with hyperacetylation and loss of mitochondrial pool of heat shock protein 60 (hsp60)

    Get PDF
    Osteosarcoma is one of the most malignant tumors of childhood and adolescence that is often resistant to standard chemo- and radio-therapy. Geldanamycin and geldanamycin analogs have been recently studied as potential anticancer agents for osteosarcoma treatment. Here, for the first time, we have presented novel anticancer mechanisms of geldanamycin biological activity. Moreover, we demonstrated an association between the effects of geldanamycin on the major heat shock proteins (HSPs) and the overall survival of highly metastatic human osteosarcoma 143B cells. We demonstrated that the treatment of 143B cells with geldanamycin caused a subsequent upregulation of cytoplasmic Hsp90 and Hsp70 whose activity is at least partly responsible for cancer development and drug resistance. On the other hand, geldanamycin induced upregulation of Hsp60 gene expression, and a simultaneous loss of hyperacetylated Hsp60 mitochondrial protein pool resulting in decreased viability and augmented cancer cell death. Hyperacetylation of Hsp60 seems to be associated with anticancer activity of geldanamycin. In light of the fact that mitochondrial dysfunction plays a critical role in the apoptotic signaling pathway, the presented data may support a hypothesis that Hsp60 can be another functional part of mitochondria-related acetylome being a potential target for developing novel anticancer strategies

    Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT

    Get PDF
    Ubiquitin-dependent mechanisms have emerged as essential regulatory elements controlling cellular levels of Smads and TGFß-dependent biological outputs such as epithelial–mesenchymal transition (EMT). In this study, we identify a HECT E3 ubiquitin ligase known as WWP2 (Full-length WWP2-FL), together with two WWP2 isoforms (N-terminal, WWP2-N; C-terminal WWP2-C), as novel Smad-binding partners. We show that WWP2-FL interacts exclusively with Smad2, Smad3 and Smad7 in the TGFß pathway. Interestingly, the WWP2-N isoform interacts with Smad2 and Smad3, whereas WWP2-C interacts only with Smad7. In addition, WWP2-FL and WWP2-C have a preference for Smad7 based on protein turnover and ubiquitination studies. Unexpectedly, we also find that WWP2-N, which lacks the HECT ubiquitin ligase domain, can also interact with WWP2-FL in a TGFß-regulated manner and activate endogenous WWP2 ubiquitin ligase activity causing degradation of unstimulated Smad2 and Smad3. Consistent with our protein interaction data, overexpression and knockdown approaches reveal that WWP2 isoforms differentially modulate TGFß-dependent transcription and EMT. Finally, we show that selective disruption of WWP2 interactions with inhibitory Smad7 can stabilise Smad7 protein levels and prevent TGFß-induced EMT. Collectively, our data suggest that WWP2-N can stimulate WWP2-FL leading to increased activity against unstimulated Smad2 and Smad3, and that Smad7 is a preferred substrate for WWP2-FL and WWP2-C following prolonged TGFß stimulation. Significantly, this is the first report of an interdependent biological role for distinct HECT E3 ubiquitin ligase isoforms, and highlights an entirely novel regulatory paradigm that selectively limits the level of inhibitory and activating Smads

    Characterization of a new pathway that activates lumisterol <i>in vivo</i> to biologically active hydroxylumisterols

    Get PDF
    Abstract Using LC/qTOF-MS we detected lumisterol, 20-hydroxylumisterol, 22-hydroxylumisterol, 24-hydroxylumisterol, 20,22-dihydroxylumisterol, pregnalumisterol, 17-hydroxypregnalumisterol and 17,20-dihydroxypregnalumisterol in human serum and epidermis, and the porcine adrenal gland. The hydroxylumisterols inhibited proliferation of human skin cells in a cell type-dependent fashion with predominant effects on epidermal keratinocytes. They also inhibited melanoma proliferation in both monolayer and soft agar. 20-Hydroxylumisterol stimulated the expression of several genes, including those associated with keratinocyte differentiation and antioxidative responses, while inhibiting the expression of others including RORA and RORC. Molecular modeling and studies on VDRE-transcriptional activity excludes action through the genomic site of the VDR. However, their favorable interactions with the A-pocket in conjunction with VDR translocation studies suggest they may act on this non-genomic VDR site. Inhibition of RORα and RORγ transactivation activities in a Tet-on CHO cell reporter system, RORα co-activator assays and inhibition of (RORE)-LUC reporter activity in skin cells, in conjunction with molecular modeling, identified RORα and RORγ as excellent receptor candidates for the hydroxylumisterols. Thus, we have discovered a new biologically relevant, lumisterogenic pathway, the metabolites of which display biological activity. This opens a new area of endocrine research on the effects of the hydroxylumisterols on different pathways in different cells and the mechanisms involved

    Sequential Metabolism of 7-Dehydrocholesterol to Steroidal 5,7-Dienes in Adrenal Glands and Its Biological Implication in the Skin

    Get PDF
    Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3βHSD for 7DHP (Vm/Km) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC→22(OH)7DHC→20,22(OH)27DHC→7DHP, with potential further metabolism of 7DHP mediated by 3βHSD or CYP17, depending on mammalian species. The 5–7 dienal intermediates of the pathway can be a source of biologically active vitamin D3 derivatives after delivery to or production in the skin, an organ intermittently exposed to solar radiation
    corecore