801 research outputs found

    Constraining the size of the narrow line region in distant quasars

    Full text link
    We propose a proper method to measure the size of the narrow line region (NLR) in distant quasars. The apparent angular size of the NLR is, in general, too small to resolve technically. However, it is possible to map the NLR if with gravitational lensing. In our method, we directly compare the observed image of the NLR with the expected lensed images of the NLR for various source sizes and lens models. Seeking the best fit image via the comparison procedures, we can obtain the best-fit size and the best-fit lens model. We apply this method to the two-dimensional spectroscopic data of a famous lensed quasar, Q2237+0305. If the lens galaxy resembles the applied lens model, an upper limit to the NLR size can be set 750 pc. Further, we examine how the fitting results will be improved by future observations, taking into account the realistic observational effects, such as seeing. Future observations will provide us more stringent constraints on the size of the NLR and on the density profile of the lens galaxy.Comment: 17 pages including 4 figures, accepted to Ap

    Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon

    Get PDF
    Recently, atomic ensemble and single photons were successfully entangled by using collective enhancement [D. N. Matsukevich, \textit{et al.}, Phys. Rev. Lett. \textbf{95}, 040405(2005).], where atomic internal states and photonic polarization states were correlated in nonlocal manner. Here we experimentally clarified that in an ensemble of atoms and a photon system, there also exists an entanglement concerned with spatial degrees of freedom. Generation of higher-dimensional entanglement between remote atomic ensemble and an application to condensed matter physics are also discussed.Comment: 5 pages, 3 figure

    Virulence of Escherichia coli Isolates Obtained from Layer Chickens with Colibacillosis Associated with Pericarditis, Perihepatitis, and Salpingitis in Experimentally Infected Chicks and Embryonated Eggs

    Get PDF
    To evaluate the virulence of avian pathogenic Escherichia coli (APEC) isolates obtained from colibacillosis cases associated with pericarditis, perihepatitis, and salpingitis, the embryo lethality assay and experimental infection model in chicks were used in this study. According to the established criteria based on mortality in the embryo lethality assay for evaluating the virulence of E. coli isolates, 23 of the 26 APEC isolates associated with pericarditis and perihepatitis and 8 of the 20 isolates associated with salpingitis were found to be virulent. Isolate D137, which had been obtained from a case with pericarditis and perihepatitis and had an embryo mortality of 92%, and isolate D445, which had been obtained from a case with pericarditis and perihepatitis and had an embryo mortality of 17%, were used for the experimental infection. Four of the five 11-day-old chickens inoculated through the air sac with isolate D137 died 1 day postinoculation, and the challenge strain was recovered from the air sac, pericardial sac, or liver; however, colibacillosis lesions were found in only one of the five birds postmortem. All five chicks inoculated with isolate D445 survived for 7 days postinoculation and exhibited airsacculitis or pericarditis lesions at 7 days postinoculation; the challenge strain was not recovered from the lesions postmortem. The results obtained in this study suggest that the different APEC isolates tested cause illness in chickens through distinct pathogenesis

    Integral field spectroscopy of four lensed quasars: analysis of their neighborhood and evidence for microlensing

    Full text link
    CONTEXT: Gravitationally lensed quasars constitute an independent tool to derive H0 through time-delays; they offer as well the opportunity to study the mass distribution and interstellar medium of their lensing galaxies and, through microlensing they also allow one to study details of the emitting source. AIMS: For such studies, one needs to have an excellent knowledge of the close environment of the lensed images in order to model the lensing potential: this means observational data over a large field-of-view and spectroscopy at high spatial resolution. METHODS: We present VIMOS integral field observations around four lensed quasars: HE 0230-2130, RX J0911.4+0551, H 1413+117 and B 1359+154. Using the low, medium and high resolution modes, we study the quasar images and the quasar environments, as well as provide a detailed report of the data reduction. RESULTS: Comparison between the quasar spectra of the different images reveals differences for HE 0230-2130, RX J0911.4+0551 and H 1413+117: flux ratios between the images of the same quasar are different when measured in the emission lines and in the continuum. We have also measured the redshifts of galaxies in the neighborhood of HE 0230-2130 and RX J0911.4+0551 which possibly contribute to the total lensing potential. CONCLUSIONS: A careful analysis reveals that microlensing is the most natural explanation for the (de)magnification of the continuum emitting region of the background sources. In HE 0230-2130, image D is likely to be affected by microlensing magnification; in RX J0911.4+0551, images A1 and A3 are likely to be modified by microlensing de-magnification and in H 1413+117, at least image D is affected by microlensing.Comment: 13 pages, 18 figures. Accepted for publication in A&A: January 7, 200

    Measuring Qutrit-Qutrit Entanglement of Orbital Angular Momentum States of an Atomic Ensemble and a Photon

    Full text link
    Three-dimensional entanglement of orbital angular momentum states of an atomic qutrit and a single photon qutrit has been observed. Their full state was reconstructed using quantum state tomography. The fidelity to the maximally entangled state of Schmidt rank 3 exceeds the threshold 2/3. This result confirms that the density matrix cannot be decomposed into ensemble of pure states of Schmidt rank 1 or 2. That is, the Schmidt number of the density matrix must be equal to or greater than 3.Comment: 5 pages, 4 figure

    Pressurized H-2 rf Cavities in Ionizing Beams and Magnetic Fields

    Get PDF
    A major technological challenge in building a muon cooling channel is operating rf cavities in multitesla external magnetic fields. We report the first proof-of-principle experiment of a high pressure gas-filled rf cavity for use with intense ionizing beams and strong external magnetic fields. rf power consumption by beam-induced plasma is investigated with hydrogen and deuterium gases with pressures between 20 and 100 atm and peak rf gradients between 5 and 50 MV/m. The low pressure case agrees well with an analytical model based on electron and ion mobilities. Varying concentrations of oxygen gas are investigated to remove free electrons from the cavity and reduce the rf power consumption. Measurements of the electron attachment time to oxygen and rate of ion-ion recombination are also made. Additionally, we demonstrate the operation of the gas-filled rf cavity in a solenoidal field of up to 3 T, finding no major magnetic field dependence. All these results indicate that a high pressure gas-filled cavity is a viable technology for muon ionization cooling.open1
    • 

    corecore