165 research outputs found

    Signatures of self-organized criticality in an ultracold atomic gas

    Get PDF
    Self-organized criticality is an elegant explanation of how complex structures emerge and persist throughout nature, and why such structures often exhibit similar scale-invariant properties. Although self-organized criticality is sometimes captured by simple models that feature a critical point as an attractor for the dynamics, the connection to real-world systems is exceptionally hard to test quantitatively. Here we observe three key signatures of self-organized criticality in the dynamics of a driven–dissipative gas of ultracold potassium atoms: self-organization to a stationary state that is largely independent of the initial conditions; scale-invariance of the final density characterized by a unique scaling function; and large fluctuations of the number of excited atoms (avalanches) obeying a characteristic power-law distribution. This work establishes a well-controlled platform for investigating self-organization phenomena and non-equilibrium criticality, with experimental access to the underlying microscopic details of the system

    Breeding for resistance to new and emerging lettuce diseases in California

    Get PDF
    Abstract: Preventing crop loss due to diseases has historically been the primary focus of public lettuce (Lactuca sativa) breeding efforts in the United States. Recent years have seen a shift in the industry, with increasing percentages of romaine and mixed lettuces being grown under intensive production systems. Possibly related to this change, several diseases have recently been reported for the first time or have increased in incidence. Two of these, lettuce dieback and crown rot, affect primarily romaine lettuce, whereas a third, Fusarium wilt, threatens all types. Lettuce dieback is caused by soilborne viruses of the family Tombusviridae. This disease may be identical to 'brown blight', which was widespread in the 1940s but vanished when resistant crisphead cultivars were developed. Fusarium wilt of lettuce was initially observed in California in 1990, and first caused significant crop losses in both California and Arizona in 2001. Crown rot of romaine, now known as Phoma basal rot, was first observed in the Salinas Valley of California in 2001. The cause of this disease was recently identified as Phoma exigua. Progress and results of breeding for genetic resistance to these diseases will be discussed

    Ablation of β1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation

    Get PDF
    Integrin-mediated adhesion regulates the development and function of a range of tissues; however, little is known about its role in glandular epithelium. To assess the contribution of β1 integrin, we conditionally deleted its gene in luminal epithelia during different stages of mouse mammary gland development and in cultured primary mammary epithelia. Loss of β1 integrin in vivo resulted in impaired alveologenesis and lactation. Cultured β1 integrin–null cells displayed abnormal focal adhesion function and signal transduction and could not form or maintain polarized acini. In vivo, epithelial cells became detached from the extracellular matrix but remained associated with each other and did not undergo overt apoptosis. β1 integrin–null mammary epithelial cells did not differentiate in response to prolactin stimulation because of defective Stat5 activation. In mice where β1 integrin was deleted after the initiation of differentiation, fewer defects in alveolar morphology occurred, yet major deficiencies were also observed in milk protein and milk fat production and Stat5 activation, indicating a permissive role for β1 integrins in prolactin signaling. This study demonstrates that β1 integrin is critical for the alveolar morphogenesis of a glandular epithelium and for maintenance of its differentiated function. Moreover, it provides genetic evidence for the cooperation between integrin and cytokine signaling pathways

    The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance.

    Get PDF
    Background: The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security. Results: We report the 615-Mb high-quality genome sequence of B. tabaci Middle East-Asia Minor 1 (MEAM1), the first genome sequence in the Aleyrodidae family, which contains 15,664 protein-coding genes. The B. tabaci genome is highly divergent from other sequenced hemipteran genomes, sharing no detectable synteny. A number of known detoxification gene families, including cytochrome P450s and UDP-glucuronosyltransferases, are significantly expanded in B. tabaci. Other expanded gene families, including cathepsins, large clusters of tandemly duplicated B. tabaci-specific genes, and phosphatidylethanolamine-binding proteins (PEBPs), were found to be associated with virus acquisition and transmission and/or insecticide resistance, likely contributing to the global invasiveness and efficient virus transmission capacity of B. tabaci. The presence of 142 horizontally transferred genes from bacteria or fungi in the B. tabaci genome, including genes encoding hopanoid/sterol synthesis and xenobiotic detoxification enzymes that are not present in other insects, offers novel insights into the unique biological adaptations of this insect such as polyphagy and insecticide resistance. Interestingly, two adjacent bacterial pantothenate biosynthesis genes, panB and panC, have been co-transferred into B. tabaci and fused into a single gene that has acquired introns during its evolution. Conclusions: The B. tabaci genome contains numerous genetic novelties, including expansions in gene families associated with insecticide resistance, detoxification and virus transmission, as well as numerous horizontally transferred genes from bacteria and fungi. We believe these novelties likely have shaped B. tabaci as a highly invasive polyphagous crop pest and efficient vector of plant viruses. The genome serves as a reference for resolving the B. tabaci cryptic species complex, understanding fundamental biological novelties, and providing valuable genetic information to assist the development of novel strategies for controlling whiteflies and the viruses they transmit

    In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys

    Get PDF
    Zinc and zirconium were selected as the alloying elements in biodegradable magnesium alloys, considering their strengthening effect and good biocompatibility. The degradation rate, hydrogen evolution, ion release, surface layer and in vitro cytotoxicity of two Mg–Zn–Zr alloys, i.e. ZK30 and ZK60, and a WE-type alloy (Mg–Y–RE–Zr) were investigated by means of long-term static immersion testing in Hank’s solution, non-static immersion testing in Hank’s solution and cell-material interaction analysis. It was found that, among these three magnesium alloys, ZK30 had the lowest degradation rate and the least hydrogen evolution. A magnesium calcium phosphate layer was formed on the surface of ZK30 sample during non-static immersion and its degradation caused minute changes in the ion concentrations and pH value of Hank’s solution. In addition, the ZK30 alloy showed insignificant cytotoxicity against bone marrow stromal cells as compared with biocompatible hydroxyapatite (HA) and the WE-type alloy. After prolonged incubation for 7 days, a stimulatory effect on cell proliferation was observed. The results of the present study suggested that ZK30 could be a promising material for biodegradable orthopedic implants and worth further investigation to evaluate its in vitro and in vivo degradation behavior

    Stress and breast cancer: from epidemiology to molecular biology

    Get PDF
    Stress exposure has been proposed to contribute to the etiology of breast cancer. However, the validity of this assertion and the possible mechanisms involved are not well established. Epidemiologic studies differ in their assessment of the relative contribution of stress to breast cancer risk, while physiological studies propose a clear connection but lack the knowledge of intracellular pathways involved. The present review aims to consolidate the findings from different fields of research (including epidemiology, physiology, and molecular biology) in order to present a comprehensive picture of what we know to date about the role of stress in breast cancer development
    corecore