956 research outputs found

    A transient high-coherence oscillation in 4U 1820-30

    Full text link
    We re-analyzed two Rossi X-Ray Timing Explorer archival observations of the atoll source 4U 1820-30 in order to investigate the detailed time-frequency properties of the source during the intervals when a ~7 Hz QPO was detected by Wijnands et al. (1999, ApJ, 512, L39). We find that in both observations, in addition to a QPO signal lasting a couple of minutes as previously reported, there is a much narrower transient oscillation with a life time of only a few seconds. Within this time, the oscillation is consistent with being coherent. Its integrated fractional rms is around 10% and its frequency 7.3 Hz and 5.7 Hz in the two observations. We discuss the possible association of this QPO with other oscillations known both in Neutron-Star and Black-Hole systems, concentrating on the similarities with the narrow 5-7 Hz oscillations observed at high flux in Black-Hole Candidates.Comment: 5 pages, 3 figures, accepted for publication in A&A. FIgure 1 is reduced in resolution, full-resolution version of this text available at http://www.merate.mi.astro.it/~belloni/ms0335.ps.g

    An observational review of accretion-driven millisecond X-ray pulsars

    Full text link
    I present an observational review of the five currently known accretion-driven millisecond X-ray pulsars. A prominent place in this review is given to SAX J1808.4-3658; it was the first such system discovered and currently four outbursts have been observed from this source. This makes SAX J1808.4-3658 the best studied example of the group. Its most recent outburst in October 2002 is of particular interest because of the discovery of two simultaneous kilohertz quasi-periodic oscillations and nearly coherent oscillations during type-I X-ray bursts. This is the first time that such phenomena are observed in a system for which the neutron star spin frequency is exactly known. The other four systems were discovered within the last two years and only limited results have been published. Since new exiting results are to be expected in the future for all five sources, this review will only represent a snap-shot of the current observational knowledge of accretion-driven millisecond X-ray pulsars. A more extended and fully up-to-date review can be found at http://zon.wins.uva.nl/~rudy/admxp/.Comment: To appear in the Proceedings of the Symposium "The Restless High-Energy Universe", 5-8 May 2003, Amsterdam, The Netherlands, E.P.J. van den Heuvel, J.J.M. in 't Zand, and R.A.M.J. Wijers Eds. A more extended and always fully-up-to-date version of this review can be found at http://zon.wins.uva.nl/~rudy/admxp

    A continuous Flaring- to Normal-branch transition in Sco X-1

    Full text link
    We report the first resolved rapid transition from a Flaring Branch Oscillation to a Normal Branch Oscillation in the RXTE data of the Z source Sco X-1. The transition took place on a time scale of ~100 seconds and was clearly associated to the Normal Branch-Flaring Branch vertex in the color-color diagram. We discuss the results in the context of the possible association of the Normal Branch Oscillation with other oscillations known both in Neutron-Star and Black-Hole systems, concentrating on the similarities with the narrow 4-6 Hz oscillations observed at high flux in Black-Hole Candidates.Comment: 5 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    The Swift X-ray monitoring campaign of the center of the Milky Way

    Get PDF
    In 2006 February, shortly after its launch, Swift began monitoring the center of the Milky Way with the onboard X-Ray Telescope using short 1-ks exposures performed every 1-4 days. Between 2006 and 2014, over 1200 observations have been obtained, amounting to ~1.2 Ms of exposure time. This has yielded a wealth of information about the long-term X-ray behavior of the supermassive black hole Sgr A*, and numerous transient X-ray binaries that are located within the 25'x25' region covered by the campaign. In this review we highlight the discoveries made during these first nine years, which includes 1) the detection of seven bright X-ray flares from Sgr A*, 2) the discovery of the magnetar SGR J1745-29, 3) the first systematic analysis of the outburst light curves and energetics of the peculiar class of very-faint X-ray binaries, 4) the discovery of three new transient X-ray sources, 5) exposing low-level accretion in otherwise bright X-ray binaries, and 6) the identification of a candidate X-ray binary/millisecond radio pulsar transitional object. We also reflect on future science to be done by continuing this Swift's legacy campaign of the Galactic center, which includes high-cadence monitoring of how the interaction between the gaseous object `G2' and Sgr A* plays out in the future.Comment: 13 pages, 6 figures, 4 tables. Invited review to appear in Elsevier's Journal of High Energy Astrophysics dedicated issue "Swift: 10 years of discovery

    Standalone, battery powered radiation monitors for accelerator electronics

    Get PDF
    A technical description of the design of a new type of radiation monitors is given. The key point in the design is the low power consumption inferior to 17 mW in radiation sensing mode and inferior to 0.3 mW in standby mode. The radiation monitors can operate without any external power or signal cabling and measure and store radiation data for a maximum period of 800 days. To read the radiation data, a standard PC can be connected via a USB interface to the device at any time. Only a few seconds are required to read out a single monitor. This makes it possible to survey a large network of monitoring devices in a short period of time, for example during a stop of the accelerator

    The Galactic center X-ray transients AX J1745.6-2901 and GRS 1741-2853

    Full text link
    AX J1745.6-2901 and GRS 1741-2853 are two transient neutron star low-mass X-ray binaries that are located within ~10' from the Galactic center. Multi-year monitoring observations with the Swift/XRT has exposed several accretion outbursts from these objects. We report on their updated X-ray light curves and renewed activity that occurred in 2010-2013.Comment: 2 pages, 1 figure, 1 table. To appear in conference proceedings of IAU symposium 303 "The Galactic Center: Feeding and Feedback in a Normal Galactic Nucleus

    A four-year baseline Swift study of enigmatic X-ray transients located near the Galactic center

    Get PDF
    We report on continued monitoring observations of the Galactic center carried out by the X-ray telescope aboard the Swift satellite in 2008 and 2009. This campaign revealed activity of the five known X-ray transients AX J1745.6-2901, CXOGC J174535.5-290124, GRS 1741-2853, XMM J174457-2850.3 and CXOGC J174538.0-290022. All these sources are known to undergo very faint X-ray outbursts with 2-10 keV peak luminosities of Lx,peak~1E34-1E36 erg/s, although the two confirmed neutron star low-mass X-ray binaries AX J1745.6-2901 and GRS 1741-2853 can also become brighter (Lx,peak~1E36-1E37 erg/s). We discuss the observed long-term lightcurves and X-ray spectra of these five enigmatic transients. In 2008, AX J1745.6-2901 returned to quiescence following an unusually long accretion outburst of more than 1.5 years. GRS 1741-2853 was active in 2009 and displayed the brightest outburst ever recorded for this source, reaching up to a 2-10 keV luminosity of Lx~1E37 (D/7.2 kpc)^2 erg/s. This system appears to undergo recurrent accretion outbursts approximately every 2 years. Furthermore, we find that the unclassified transient XMM J174457-2850.3 becomes bright only during short episodes (days) and is often found active in between quiescence (Lx~1E32 erg/s) and its maximum outburst luminosity of Lx~1E36 erg/s. CXOGC J174535.5-290124 and CXOGC J174538.0-290022, as well as three other very-faint X-ray transients that were detected by Swift monitoring observations in 2006, have very low time-averaged mass-accretion rates of ~< 2E-12 Msun/yr. Despite having obtained two years of new data in 2008 and 2009, no new X-ray transients were detected.Comment: Minor textual revisions according to referee report, accepted for publication in A&

    Swift J1357.2-0933: the faintest black hole?

    Get PDF
    Swift J1357.2-0933 is the first confirmed very faint black hole X-ray transient and has a short estimated orbital period of 2.8 hr. We observed Swift J1357.2-0933 for ~50 ks with XMM-Newton in 2013 July during its quiescent state. The source is clearly detected at a 0.5-10 keV unabsorbed flux of ~3x10^-15 erg cm-2 s-1. If the source is located at a distance of 1.5 kpc (as suggested in the literature), this would imply a luminosity of ~8x10^29 erg s-1, making it the faintest detected quiescent black hole LMXB. This would also imply that there is no indication of a reversal in the quiescence X-ray luminosity versus orbital period diagram down to 2.8 hr, as has been predicted theoretically and recently supported by the detection of the 2.4 hr orbital period black hole MAXI J1659-152 at a 0.5-10 keV X-ray luminosity of ~ 1.2 x 10^31 erg s-1. However, there is considerable uncertainty in the distance of Swift J1357.2-0933 and it may be as distant as 6 kpc. In this case, its quiescent luminosity would be Lx ~ 1.3 x 10^31 erg s-1, i.e., similar to MAXI J1659-152 and hence it would support the existence of such a bifurcation period. We also detected the source in optical at r' ~22.3 mag with the Liverpool telescope, simultaneously to our X-ray observation. The X-ray/optical luminosity ratio of Swift J1357.2-0933 agrees with the expected value for a black hole at this range of quiescent X-ray luminosities.Comment: 5 pages, 3 figures, Accepted for publication in MNRA

    Efficient interface conditions for the semi-vectorial finite-difference beam propagation method

    Get PDF
    Efficient interface conditions (EICs) are derived for the propagation equation using the slowly varying envelope approximation for the dominant electric field component. At the interface between two different media, the two lateral second derivatives in the discretized propagation equation are adapted such that the discretized modal field equation is correct up to second order in the lateral grid spacing. Since the error term is then of the order of the lateral grid spacing, our EICs are first-order EICs. These interface conditions are compared with well-known zero-order EICs derived by Stern and Kim and Ramaswamy. It is shown that the first-order EICs yield faster convergence to the exact effective index value as the lateral grid spacing is decreased than do the zero-order EICs. It turns out that our EICs are very much like those derived by Vassallo. Using essentially the same method, he derived EICs of second and first order for the field component respectively parallel and perpendicular, to the interface. Hence the accuracy of his EICs is one order higher for the field component parallel to the interface, although it introduces an extra asymmetry in the propagation matrix

    The new X-ray transient SAX J1711.6-3808: decoupling between its 3-20 keV luminosity and its state transitions

    Get PDF
    We present a study of the correlated spectral and timing behavior of the new X-ray transient SAX J1711.6-3808 during its 2001 outburst using data obtained with the RXTE. We also investigate the correlations between those source properties and the 3-20 keV X-ray luminosity. The behavior of the source during the observations can be divided into two distinct state types. During the hard state, the energy spectra are relatively hard and can be described by only a power-law component, and the characteristic frequencies (i.e., the frequency of the 1-7 Hz QPOs observed for the first time in this source) in the power spectra are low. However, during the ``soft'' state, the spectra are considerably softer (in addition to the power-law component, a soft component is necessary to fit the spectra) and the frequencies are the highest observed. Remarkably, this distinction into two separate states cannot be extrapolated to also include the 3-20 keV X-ray luminosity. Except for one observation, this luminosity steadily decreased but the hard state was observed both at the highest and lowest observed luminosities. In contrast, the soft state occurred only at intermediate luminosities. This clearly demonstrates that the state behavior of SAX J1711.6-3808 is decoupled from its X-ray luminosity and that if the X-ray luminosity traces the accretion rate in SAX J1711.6-3808, then the state transitions are not good accretion rate indicators, or vice versa. The data of SAX J1711.6-3808 does not allow us to conclusively determine its exact nature. The source resembles both neutron star and black hole systems when they have low luminosities. We discuss our results with respect to the correlated timing and spectral behavior observed in other LMXBs and the implications of our results on the modeling of the outburst light curves of X-ray transients.Comment: Accepted for publication in ApJ Main Journal, 13 September 200
    • …
    corecore