202 research outputs found

    Phospholipid scramblases and Tubby-like proteins belong to a new superfamily of membrane tethered transcription factors

    Get PDF
    Motivation: Phospholipid scramblases (PLSCRs) constitute a family of cytoplasmic membrane-associated proteins that were identified based upon their capacity to mediate a Ca2+-dependent bidirectional movement of phospholipids across membrane bilayers, thereby collapsing the normally asymmetric distribution of such lipids in cell membranes. The exact function and mechanism(s) of these proteins nevertheless remains obscure: data from several laboratories now suggest that in addition to their putative role in mediating transbilayer flip/flop of membrane lipids, the PLSCRs may also function to regulate diverse processes including signaling, apoptosis, cell proliferation and transcription. A major impediment to deducing the molecular details underlying the seemingly disparate biology of these proteins is the current absence of any representative molecular structures to provide guidance to the experimental investigation of their function

    Impact of Surface-Active Guanidinium-, Tetramethylguanidinium-, and Cholinium-Based Ionic Liquids on Vibrio Fischeri Cells and Dipalmitoylphosphatidylcholine Liposomes

    Get PDF
    We investigated the toxicological effect of seven novel cholinium, guanidinium, and tetramethylguanidinium carboxylate ionic liquids (ILs) from an ecotoxicological point of view. The emphasis was on the potential structure-toxicity dependency of these surface-active ILs in aqueous environment. The median effective concentrations (EC50) were defined for each IL using Vibrio (Aliivibrio) fischeri marine bacteria. Dipalmitoylphosphatidylcholine (DPPC) liposomes were used as biomimetic lipid membranes to study the interactions between the surface-active ILs and the liposomes. The interactions were investigated by following the change in the DPPC phase transition behaviour using differential scanning calorimetry (DSC). Critical micelle concentrations for the ILs were determined to clarify the analysis of the toxicity and the interaction results. Increasing anion alkyl chain length increased the toxicity, whereas branching of the chain decreased the toxicity of the ILs. The toxicity of the ILs in this study was mainly determined by the surface-active anions, while cations induced a minor impact on the toxicity. In the DSC experiments the same trend was observed for all the studied anions, whereas the cations seemed to induce more variable impact on the phase transition behaviour. Toxicity measurements combined with liposome interaction studies can provide a valuable tool for assessing the mechanism of toxicity.Peer reviewe

    Interactions of Ionic Liquids and Spirocyclic Compounds with Liposome Model Membranes. A Steady-State Fluorescence Anisotropy Study

    Get PDF
    Understanding the toxicity of ionic liquids (ILs) is crucial in the search of greener chemicals. By comparing in vivo toxicity and in vitro interactions determined between compounds and biomimetic lipid membranes, more detailed toxicity vs. structure relation can be obtained. However, determining the interactions between non-surface-active compounds and liposomes has been a challenging task. Organisational changes induced by ILs and IL-like spirocyclic compounds within 1,6-diphenyl-1,3,5-hexatriene-doped biomimetic liposomes was studied by steady-state fluorescence anisotropy technique. The extent of organisational changes detected within the liposome bilayers were compared to the toxicity of the compounds determined using Vibrio Fischeri bacteria. Four liposome compositions made of pure 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocoline (POPC) and mixtures of POPC, 1-palmitoyl-2-oleyl-sn-glycero-3-phosphoserine (POPS), and cholesterol (Chol) were tested as biomimetic models. Changes observed within the POPC/POPS/Chol 55:20:25 bilayers correlated the best with the toxicity results: ten out of twelve compounds followed the trend of increasing bilayer disorder - increasing toxicity. The study suggests that the toxicity of non-surface-active compounds is dependent on their ability to diffuse into the bilayers. The extent of bilayer's organisational changes correlates rather well with the toxicity of the compounds. Highly sensitive technique, such as fluorescence anisotropy measurements, is needed for detecting subtle changes within the bilayer structures.Peer reviewe

    Molecular organization of the tear fluid lipid layer

    Get PDF
    The tear fluid protects the corneal epithelium from drying out as well as from invasion by pathogens. It also provides cell nutrients. Similarly to lung surfactant, it is composed of an aqueous phase covered by a lipid layer. Here we describe the molecular organization of the anterior lipid layer of the tear film. Artificial tear fluid lipid layers (ATFLLs) composed of egg yolk phosphatidylcholine (60 mol %), free fatty acids (20 mol %), cholesteryl oleate (10 mol %), and triglycerides (10 mol %) were deposited on the air-water interface and their physico-chemical behavior was compared to egg-yolk phosphatidylcholine monolayers by using Langmuir-film balance techniques, x-ray diffraction, and imaging techniques as well as in silico molecular level simulations. At low surface pressures, ATFLLs were organized at the air-water interface as heterogeneous monomolecular films. Upon compression the ATFLLs collapsed toward the air phase and formed hemispherelike lipid aggregates. This transition was reversible upon relaxation. These results were confirmed by molecular-level simulations of ATFLL, which further provided molecular-scale insight into the molecular distributions inside and dynamics of the tear film. Similar type of behavior is observed in lung surfactant but the folding takes place toward the aqueous phase. The results provide novel information of the function of lipids in the tear fluid

    Requirements for Membrane Attack Complex Formation and Anaphylatoxins Binding to Collagen-Activated Platelets

    Get PDF
    The activation of complement during platelet activation is incompletely understood.We sought to explore the formation of C5b-9 and anaphylatoxins binding to collagen-activated platelets.C5b-9, anaphylatoxins C3a, C4a and C5a, and anaphylatoxin receptors C3aR1 and C5aR were measured by flow cytometry and/or confocal microscopy. Platelet microparticles were quantified by flow cytometry, and their C5b-9 content was determined by western blot analyses. In all experiments, sodium citrate was used for blood anticoagulation.C5b-9 rapidly formed on the platelet surface following activation with collagen, TRAP, ADP or A23187, but was surprisingly restricted to a subset of platelets (1 to 15%) independently of P-selectin or phosphatidylserine exposure. Following collagen activation, C5b-9-positive platelets in thrombi were found associated with collagen fibres. C5b-9 formation was obliterated by Mg(2+)-EGTA and significantly reduced by the thrombin inhibitor hirudin (-37%, p<0.05), but was unaffected by chondroitinase, compstatin, SCH79797 (PAR-1 inhibitor), or in the PRP of a MBL-deficient donor. Compstatin and Mg(2+)-EGTA, but not hirudin, SCH79797 or chondroitinase, inhibited the formation of collagen-induced microparticles (-71% and -44%, respectively, p<0.04). These microparticles contained greater amounts of C5b-9 compared with the other agonists. Platelet activation by collagen or convulxin resulted in the strong binding of anaphylatoxins and the exposure of receptors C3aR1 and C5aR (CD88) on their surface.C5b-9 formation on collagen-activated platelets is i) partially controlled by thrombin, ii) restricted to a subset of platelets, and iii) can occur without P-selectin expression or phosphatidylserine exposure. Activated platelets bind anaphylatoxins on their surface and express C3a and C5a receptors, which may contribute to the localization of inflammatory processes during thrombosis

    Ghrelin-induced hypothermia: A physiological basis but no clinical risk

    Full text link
    Ghrelin increases food intake and decreases energy expenditure, promoting a positive energy balance. We observed a single case of serious hypothermia during sustained ghrelin treatment in a male subject, suggesting that ghrelin may play a role in the regulation of body temperature. We therefore investigated the effect of ghrelin treatment on body temperature in rodents and humans under controlled conditions. Intriguingly, we could demonstrate ghrelin binding in axon terminals of the medial preoptic area of the hypothalamus located in the vicinity of cold-sensitive neurons. This localization of ghrelin receptors provides a potential anatomical basis for the regulation of body temperature by ghrelin. However, our follow-up studies also indicated that neither a chronic i.c.v. application of ghrelin in rats, nor a single s.c. injection under cold exposure in mice resulted in a relevant decrease in body core temperature. In addition, a four-hour intravenous ghrelin infusion did not decrease body surface temperature in healthy humans. We concluded that while there is a theoretical molecular basis for ghrelin to modify body temperature in mammals, its magnitude is irrelevant under physiologic circumstances. Hypothermia is not likely to represent a serious risk associated with this agent and pathway

    WtF-Nano : One-Pot Dewatering and Water-Free Topochemical Modification of Nanocellulose in Ionic Liquids or gamma-Valerolactone

    Get PDF
    Ionic liquids are used to dewater a suspension of birch Kraft pulp cellulose nanofibrils (CNF) and as a medium for water-free topochemical modification of the nanocellulose (a process denoted as "WtF-Nano"). Acetylation was applied as a model reaction to investigate the degree of modification and scope of effective ionic liquid structures. Little difference in reactivity was observed when water was removed, after introduction of an ionic liquid or molecular co-solvent. However, the viscoelastic properties of the CNF suspended in two ionic liquids show that the more basic, but non-dissolving ionic liquid, allows for better solvation of the CNF. Vibrio fischeri bacterial tests show that all ionic liquids in this study were harmless. Scanning electron microscopy and wide-angle X-ray scattering on regenerated samples show that the acetylated CNF is still in a fibrillar form. 1D and 2D NMR analyses, after direct dissolution in a novel ionic liquid electrolyte solution, indicate that both cellulose and residual xylan on the surface of the nanofibrils reacts to give acetate esters.Peer reviewe

    Correlation between Ionic Liquid Cytotoxicity and Liposome-Ionic Liquid Interactions

    Get PDF
    This study aims at extending the understanding of the toxicity mechanism of ionic liquids (ILs) using various analytical methods and cytotoxicity assays. The cytotoxicity of eight ILs and one zwitterionic compound was determined using mammalian and bacterial cells. The time dependency of the IL toxicity was assessed using human corneal epithelial cells. Hemolysis was performed using human red blood cells and the results were compared with destabilization data of synthetic liposomes upon addition of ILs. The effect of the ILs on the size and zeta potential of liposomes revealed information on changes in the lipid bilayer. Differential scanning calorimetry was used to study the penetration of the ILs into the lipid bilayer. Pulsed field gradient nuclear magnetic resonance spectroscopy was used to determine whether the ILs occurred as unimers, micelles, or if they were bound to liposomes. The results show that the investigated ILs can be divided into three groups based on the cytotoxicity mechanism: cell wall disrupting ILs, ILs exerting toxicity through both cell wall penetration and metabolic alteration, and ILs affecting solely on cell metabolism.Peer reviewe

    The Phospholipid Scramblases 1 and 4 Are Cellular Receptors for the Secretory Leukocyte Protease Inhibitor and Interact with CD4 at the Plasma Membrane

    Get PDF
    Secretory leukocyte protease inhibitor (SLPI) is secreted by epithelial cells in all the mucosal fluids such as saliva, cervical mucus, as well in the seminal liquid. At the physiological concentrations found in saliva, SLPI has a specific antiviral activity against HIV-1 that is related to the perturbation of the virus entry process at a stage posterior to the interaction of the viral surface glycoprotein with the CD4 receptor. Here, we confirm that recombinant SLPI is able to inhibit HIV-1 infection of primary T lymphocytes, and show that SLPI can also inhibit the transfer of HIV-1 virions from primary monocyte-derived dendritic cells to autologous T lymphocytes. At the molecular level, we show that SLPI is a ligand for the phospholipid scramblase 1 (PLSCR1) and PLSCR4, membrane proteins that are involved in the regulation of the movements of phospholipids between the inner and outer leaflets of the plasma membrane. Interestingly, we reveal that PLSCR1 and PLSCR4 also interact directly with the CD4 receptor at the cell surface of T lymphocytes. We find that the same region of the cytoplasmic domain of PLSCR1 is involved in the binding to CD4 and SLPI. Since SLPI was able to disrupt the association between PLSCR1 and CD4, our data suggest that SLPI inhibits HIV-1 infection by modulating the interaction of the CD4 receptor with PLSCRs. These interactions may constitute new targets for antiviral intervention

    Interactions between selected bile salts and Triton X-100 or sodium lauryl ether sulfate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to develop colloidal drug carriers with desired properties, it is important to determine physico-chemical characteristics of these systems. Bile salt mixed micelles are extensively studied as novel drug delivery systems. The objective of the present investigation is to develop and characterize mixed micelles of nonionic (Triton X-100) or anionic (sodium lauryl ether sulfate) surfactant having oxyethylene groups in the polar head and following bile salts: cholate, deoxycholate and 7-oxodeoxycholate.</p> <p>Results</p> <p>The micellization behaviour of binary anionic-nonionic and anionic-anionic surfactant mixtures was investigated by conductivity and surface tension measurements. The results of the study have been analyzed using Clint's, Rubingh's, and Motomura's theories for mixed binary systems. The negative values of the interaction parameter indicate synergism between micelle building units. It was noticed that Triton X-100 and sodium lauryl ether sulfate generate the weakest synergistic interactions with sodium deoxycholate, while 7-oxodeoxycholate creates the strongest attractive interaction with investigated co-surfactants.</p> <p>Conclusion</p> <p>It was concluded that increased synergistic interactions can be attributed to the larger number of hydrophilic groups at α side of the bile salts. Additionally, 7-oxo group of 7-oxodeoxycholate enhance attractive interactions with selected co-surfactants more than 7-hydroxyl group of sodium cholate.</p
    corecore