30,943 research outputs found

    The subgroup growth spectrum of virtually free groups

    Get PDF
    For a finitely generated group Γ\Gamma denote by μ(Γ)\mu(\Gamma) the growth coefficient of Γ\Gamma, that is, the infimum over all real numbers dd such that sn(Γ)<n!ds_n(\Gamma)<n!^d. We show that the growth coefficient of a virtually free group is always rational, and that every rational number occurs as growth coefficient of some virtually free group. Moreover, we describe an algorithm to compute μ\mu

    Eigenvalue Decomposition as a Generalized Synchronization Cluster Analysis

    Get PDF
    Motivated by the recent demonstration of its use as a tool for the detection and characterization of phase-shape correlations in multivariate time series, we show that eigenvalue decomposition can also be applied to a matrix of indices of bivariate phase synchronization strength. The resulting method is able to identify clusters of synchronized oscillators, and to quantify their strength as well as the degree of involvement of an oscillator in a cluster. Since for the case of a single cluster the method gives similar results as our previous approach, it can be seen as a generalized Synchronization Cluster Analysis, extending its field of application to more complex situations. The performance of the method is tested by applying it to simulation data.Comment: Submitted Oct 2005, accepted Jan 2006, "published" Oct 2007, actually available Jan 200

    Asymptotics of relative heat traces and determinants on open surfaces of finite area

    Full text link
    The goal of this paper is to prove that on surfaces with asymptotically cusp ends the relative determinant of pairs of Laplace operators is well defined. We consider a surface with cusps (M,g) and a metric h on the surface that is a conformal transformation of the initial metric g. We prove the existence of the relative determinant of the pair (Δh,Δg)(\Delta_{h},\Delta_{g}) under suitable conditions on the conformal factor. The core of the paper is the proof of the existence of an asymptotic expansion of the relative heat trace for small times. We find the decay of the conformal factor at infinity for which this asymptotic expansion exists and the relative determinant is defined. Following the paper by B. Osgood, R. Phillips and P. Sarnak about extremal of determinants on compact surfaces, we prove Polyakov's formula for the relative determinant and discuss the extremal problem inside a conformal class. We discuss necessary conditions for the existence of a maximizer.Comment: This is the final version of the article before it gets published. 51 page

    Lorentz invariance violation and charge (non--)conservation: A general theoretical frame for extensions of the Maxwell equations

    Full text link
    All quantum gravity approaches lead to small modifications in the standard laws of physics which lead to violations of Lorentz invariance. One particular example is the extended standard model (SME). Here, a general phenomenological approach for extensions of the Maxwell equations is presented which turns out to be more general than the SME and which covers charge non--conservation (CNC), too. The new Lorentz invariance violating terms cannot be probed by optical experiments but need, instead, the exploration of the electromagnetic field created by a point charge or a magnetic dipole. Some scalar--tensor theories and higher dimensional brane theories predict CNC in four dimensions and some models violating Special Relativity have been shown to be connected with CNC and its relation to the Einstein Equivalence Principle has been discussed. Due to this upcoming interest, the experimental status of electric charge conservation is reviewed. Up to now there seem to exist no unique tests of charge conservation. CNC is related to the precession of polarization, to a modification of the 1/r1/r--Coulomb potential, and to a time-dependence of the fine structure constant. This gives the opportunity to describe a dedicated search for CNC.Comment: To appear in Physical Review

    Overview of the 2005 cross-language image retrieval track (ImageCLEF)

    Get PDF
    The purpose of this paper is to outline efforts from the 2005 CLEF crosslanguage image retrieval campaign (ImageCLEF). The aim of this CLEF track is to explore the use of both text and content-based retrieval methods for cross-language image retrieval. Four tasks were offered in the ImageCLEF track: a ad-hoc retrieval from an historic photographic collection, ad-hoc retrieval from a medical collection, an automatic image annotation task, and a user-centered (interactive) evaluation task that is explained in the iCLEF summary. 24 research groups from a variety of backgrounds and nationalities (14 countries) participated in ImageCLEF. In this paper we describe the ImageCLEF tasks, submissions from participating groups and summarise the main fndings

    Ray-tracing in pseudo-complex General Relativity

    Full text link
    Motivated by possible observations of the black hole candidate in the center of our galaxy and the galaxy M87, ray-tracing methods are applied to both standard General Relativity (GR) and a recently proposed extension, the pseudo-complex General Relativity (pc-GR). The correction terms due to the investigated pc-GR model lead to slower orbital motions close to massive objects. Also the concept of an innermost stable circular orbit (ISCO) is modified for the pc-GR model, allowing particles to get closer to the central object for most values of the spin parameter aa than in GR. Thus, the accretion disk, surrounding a massive object, is brighter in pc-GR than in GR. Iron Kα\alpha emission line profiles are also calculated as those are good observables for regions of strong gravity. Differences between the two theories are pointed out.Comment: revised versio

    Comment on 'Stability of the semiclassical Einstein equation'

    Full text link
    Some mathematical errors of the paper commented upon [W.-M. Suen, Phys. Rev. D 40, (1989) 315] are corrected.Comment: 3 pages, LaTeX, reprinted from Phys. Rev. D 50 (1994) 545

    Improving LLR Tests of Gravitational Theory

    Full text link
    Accurate analysis of precision ranges to the Moon has provided several tests of gravitational theory including the Equivalence Principle, geodetic precession, parameterized post-Newtonian (PPN) parameters γ\gamma and β\beta, and the constancy of the gravitational constant {\it G}. Since the beginning of the experiment in 1969, the uncertainties of these tests have decreased considerably as data accuracies have improved and data time span has lengthened. We are exploring the modeling improvements necessary to proceed from cm to mm range accuracies enabled by the new Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) currently under development in New Mexico. This facility will be able to make a significant contribution to the solar system tests of fundamental and gravitational physics. In particular, the Weak and Strong Equivalence Principle tests would have a sensitivity approaching 10−14^{-14}, yielding sensitivity for the SEP violation parameter η\eta of ∼3×10−5\sim 3\times 10^{-5}, v2/c2v^2/c^2 general relativistic effects would be tested to better than 0.1%, and measurements of the relative change in the gravitational constant, G˙/G\dot{G}/G, would be ∼0.1\sim0.1% the inverse age of the universe. Having this expected accuracy in mind, we discusses the current techniques, methods and existing physical models used to process the LLR data. We also identify the challenges for modeling and data analysis that the LLR community faces today in order to take full advantage of the new APOLLO ranging station.Comment: 15 pages, 3 figures, talk presented at 2003 NASA/JPL Workshop on Fundamental Physics in Space, April 14-16, 2003, Oxnard, C

    Interaction-induced Renormalization of Andreev Reflection

    Full text link
    We analyze the charge transport between a one-dimensional weakly interacting electron gas and a superconductor within the scaling approach in the basis of scattering states. We derive the renormalization group equations, which fully account for the intrinsic energy dependence due to Andreev reflection. A strong renormalization of the corresponding reflection phase is predicted even for a perfectly transparent metal-superconductor interface. The interaction-induced suppression of the Andreev conductance is shown to be highly sensitive to the normal state resistance, providing a possible explanation of experiments with carbon-nanotube/superconductor junctions by Morpurgo et al. [Science 286, 263 (2001)].Comment: 4 pages, 2 figure
    • …
    corecore