5,716 research outputs found

    Spin vector control for a spinning space station. Volume 2 - Analytic manual Final report

    Get PDF
    Computer manual for calculating dynamic vector control of dual spin space statio

    Vertex Sequences in Graphs

    Get PDF
    We consider a variety of types of vertex sequences, which are defined in terms of a requirement that the next vertex in the sequence must meet. For example, let S = (v1, v2, …, vk ) be a sequence of distinct vertices in a graph G such that every vertex vi in S dominates at least one vertex in V that is not dominated by any of the vertices preceding it in the sequence S. Such a sequence of maximal length is called a dominating sequence since the set {v1, v2, …, vk } must be a dominating set of G. In this paper we survey the literature on dominating and other related sequences, and propose for future study several new types of vertex sequences, which suggest the beginning of a theory of vertex sequences in graphs

    k-Efficient Partitions of Graphs

    Get PDF
    A set S = {u1, u2,..., ut} of vertices of G is an efficient dominating set if every vertex of G is dominated exactly once by the vertices of S. Letting Ui denote the set of vertices dominated by ui, we note that {U1, U2,... Ut} is a partition of the vertex set of G and that each Ui contains the vertex ui and all the vertices at distance 1 from it in G. In this paper, we generalize the concept of efficient domination by considering k-efficient domination partitions of the vertex set of G, where each element of the partition is a set consisting of a vertex ui and all the vertices at distance di from it, where di ∈ {0, 1,..., k}. For any integer k ≥ 0, the k-efficient domination number of G equals the minimum order of a k-efficient partition of G. We determine bounds on the k-efficient domination number for general graphs, and for k ∈ {1, 2}, we give exact values for some graph families. Complexity results are also obtained

    Client–Server and Cost Effective Sets in Graphs

    Get PDF
    For any integer k≥0, a set of vertices S of a graph G=(V,E) is k-cost-effective if for every v∈S,|N(v)∩(V∖S)|≥|N(v)∩S|+k. In this paper we study the minimum cardinality of a maximal k-cost-effective set and the maximum cardinality of a k-cost-effective set. We obtain Gallai-type results involving the k-cost-effective and global k-offensive alliance parameters, and we provide bounds on the maximum k-cost-effective number. Finally, we consider k-cost-effective sets that are also dominating. We show that computing the k-cost-effective domination number is NP-complete for bipartite graphs. Moreover, we note that not all trees have a k-cost-effective dominating set and give a constructive characterization of those that do

    Microfabricated optofluidic ring resonator structures

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98683/1/ApplPhysLett_99_141108.pd

    Editorial Remembering Frank Harary

    Get PDF

    The Upper Domatic Number of a Graph

    Get PDF
    Let (Formula presented.) be a graph. For two disjoint sets of vertices (Formula presented.) and (Formula presented.), set (Formula presented.) dominates set (Formula presented.) if every vertex in (Formula presented.) is adjacent to at least one vertex in (Formula presented.). In this paper we introduce the upper domatic number (Formula presented.), which equals the maximum order (Formula presented.) of a vertex partition (Formula presented.) such that for every (Formula presented.), (Formula presented.), either (Formula presented.) dominates (Formula presented.) or (Formula presented.) dominates (Formula presented.), or both. We study properties of the upper domatic number of a graph, determine bounds on (Formula presented.), and compare (Formula presented.) to a related parameter, the transitivity (Formula presented.) of (Formula presented.)

    Powerful alliances in graphs

    Get PDF
    AbstractFor a graph G=(V,E), a non-empty set S⊆V is a defensive alliance if for every vertex v in S, v has at most one more neighbor in V−S than it has in S, and S is an offensive alliance if for every v∈V−S that has a neighbor in S, v has more neighbors in S than in V−S. A powerful alliance is both defensive and offensive. We initiate the study of powerful alliances in graphs
    • …
    corecore