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Abstract

For any integer k ≥ 0, a set of vertices S of a graph G = (V, E) is k-cost-effective if for every v ∈ S, |N (v) ∩ (V \ S)| ≥

|N (v) ∩ S| + k. In this paper we study the minimum cardinality of a maximal k-cost-effective set and the maximum cardinality of
a k-cost-effective set. We obtain Gallai-type results involving the k-cost-effective and global k-offensive alliance parameters, and
we provide bounds on the maximum k-cost-effective number. Finally, we consider k-cost-effective sets that are also dominating.
We show that computing the k-cost-effective domination number is NP-complete for bipartite graphs. Moreover, we note that not
all trees have a k-cost-effective dominating set and give a constructive characterization of those that do.
c⃝ 2018 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Cost effective sets; k-cost-effective sets; Domination; k-cost effective domination; Global k-offensive alliances

1. Introduction

In a graph model of a computer network, specific vertices act as servers, in that they provide to neighboring vertices
various computing facilities, such as data bases and specialized software. Ideally, for economical reasons, each server
serves as many vertices (non-servers, or clients) as possible. Thus, in general, we would seek to establish a set of
servers, each of which is serving a maximal number of clients.

In this paper, we introduce a generalization of cost effective sets suggested by Hedetniemi, Hedetniemi, Kennedy,
and McRae [1]. As an introduction and motivation, in Section 2, we set up several different client–server models and
objectives. The remainder of the paper will focus on the generalization of cost effective sets, namely, k-cost-effective
sets (defined in Section 2).

We consider finite, undirected, and simple graphs G with vertex set V = V (G) and edge set E = E(G). We shall
use the following terminology. The open neighborhood of a vertex v ∈ V is the set N (v) = {u ∈ V | uv ∈ E},
and its closed neighborhood is the set N [v] = N (v) ∪ {v}. The degree of v, denoted by degG(v), is the cardinality
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of its open neighborhood. We denote by ∆(G) = ∆ and δ(G) = δ the maximum degree and the minimum degree
of a vertex in V (G), respectively. A vertex of degree one is called a leaf and its neighbor is called a support vertex.
A tree T is a double star if it contains exactly two vertices that are not leaves. A double star with respectively p
and q leaves attached at each support vertex is denoted by Sp,q . The open neighborhood of a set S ⊆ V is the set
N (S) = ∪v∈S N (v), and the closed neighborhood of a set S is the set N [S] = N (S) ∪ S = ∪v∈S N [v]. For any S ⊆ V ,
we denote the subgraph of G induced by S as G[S].

A set S ⊂ V is called independent if no two vertices in S are adjacent. The independent domination number i(G)
is the minimum cardinality of a maximal independent set, and the independence number β(G) equals the maximum
cardinality of an independent set in G. A set S ⊂ V is called a dominating set if every vertex in V \ S is adjacent to
at least one vertex in S. The domination number γ (G) equals the minimum cardinality of a dominating set in G. In
what follows, for any parameter µ(G) associated with a graph property P , we refer to a set of vertices with property
P and cardinality µ(G) as a µ(G)-set.

A Gallai Theorem is a result of the form: α(G) + λ(G) = n, where G is a graph of order n = |V | and α(G) and
λ(G) are two, non-negative integer-valued parameters of a graph. An example of a Gallai Theorem follows.

A set S ⊂ V is called enclaveless if no vertex u ∈ S satisfies N [u] ⊆ S, that is, every vertex u ∈ S has at least
one neighbor in V \ S. The enclaveless number Ψ (G) equals the maximum cardinality of an enclaveless set in G. The
following result is found in [2].

Proposition 1. For any graph G of order n, γ (G) + Ψ (G) = n.

In Section 3, we obtain Gallai theorems involving k-cost-effective numbers, and in Section 4, we provide bounds on
the maximum k-cost-effective number. Finally, in Section 5, we consider k-cost-effective sets that are also dominating.
We show that computing the k-cost-effective domination number is NP-complete for bipartite graphs. Moreover, we
give a constructive characterization of the trees having a k-cost-effective dominating set, since not all trees have such
sets.

We conclude this section by mentioning a generalization of independence and domination that will be useful in our
results. In [3,4], Fink and Jacobson introduced the concepts of p-domination and p-dependence. Let p be a positive
integer. A subset S of V is a p-dominating set of G if for every vertex v ∈ V \ S, |N (v) ∩ S| ≥ p. A p-dependent
set is a subset D of V such that the maximum degree in the subgraph G[D] induced by the vertices of D is at most
p−1. The p-domination number γp(G) is the minimum cardinality of a p-dominating set of G, and the p-dependence
number βp(G) is the maximum cardinality of a p-dependent set of G. Notice that a 1-dominating set (respectively, a
1-dependent set) is a dominating set (respectively, an independent set), and so γ (G) = γ1(G) and β1(G) = β(G). For
more information on k-domination and k-dependence, see the survey by Chellali et al. [5].

2. Client–server models

In this section, we describe several client–server models, concluding with the definition of k-cost-effectiveness, the
focus of this paper.
Differential sets

In this model, we seek a set of servers that collectively serve a maximum number of clients minus servers. The
following definitions were introduced by Haynes et al. in 2006 [6]. The differential of a set S ⊂ V is defined as
∂(S) = |N (S)|−|S|, while the differential of a graph G is defined as ∂(G) = max{∂(S) : S ⊂ V }. Thus, it is apparent
that a set S of servers that maximizes the number of clients served minus the number of servers served is just a set
that defines the differential of a graph.
Client number

In the next model, we seek to find a set of servers that collectively serves a maximum number of clients. Suppose
we define the client number C N (G) to equal the maximum number of clients that can be served by a set S of servers,
that is, C N (G) = max{|N (S) ∩ (V \ S)| : S ⊂ V }. As it turns out, it is easy to show the following; we leave the proof
to the interested reader.

Proposition 2. For any graph G of order n, γ (G) + C N (G) = n.

Corollary 3. For any graph G, Ψ (G) = C N (G).
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Client–server sets
For this model, we require that each server must serve at least k clients, independent of the number of edges between

servers. With this in mind we can introduce the following new definitions. A set S ⊂ V is called a k-client–server set
(or kcs-set) if for every vertex u ∈ S, |N (u) ∩ (V \ S)| ≥ k. The k-client–server number C Sk(G) equals the maximum
cardinality of a kcs-set in G, while the lower k-client–server number csk(G) equals the minimum cardinality of a
maximal kcs-set in G. Although newly defined here, we will not study k-client–server sets in this paper.
Client–server colorings

Another client–server model can be defined as follows. With a k -client–server set S a server vertex must serve
at least k clients in V \ S. But they can serve the same clients as other servers. Thus, there can be redundancy or
inefficiency in serving clients. A stronger requirement is that each server can be assigned to serve at least k clients
that no other server is assigned to serve. In this way, we can define a k-client–server coloring to be a partition
π = {V1, V2, . . . , Vm, Vm+1} of V (G) having the property that (i) for 1, ≤ i ≤ m, each set Vi contains a vertex vi ,
called a server, that is adjacent to every other vertex in Vi , and (ii) for every 1 ≤ i ≤ m, |Vi | ≥ k + 1. Neither
requirements (i) or (ii) need hold for the set Vm+1, as these vertices are neither servers nor clients of a server. We are
not aware that these kinds of colorings have been studied before.
Cost effective sets

For cost effective sets, each server must serve more clients than servers. This idea was first observed by Hedetniemi
et al. in [1] and studied further in [7–9]. A vertex (server) u ∈ V is called cost effective if |N (u)∩(V \S)| ≥ |N (u)∩S|.
A set S ⊂ V is called cost effective if every vertex u ∈ S is cost effective. The cost effective number C E(G) equals
the maximum cardinality of a cost effective set in G. The lower cost effective number ce(G) equals the minimum
cardinality of a maximal cost effective set in G.

If the inequality is strict, that is, if |N (u) ∩ (V \ S)| > |N (u) ∩ S|, then v is said to be very cost effective. A set
S is very cost effective if every vertex of S is very cost effective. The very cost effective number V C E(G) equals the
maximum cardinality of a very cost effective set in G, and the lower very cost effective number vce(G) equals the
minimum cardinality of a maximal very cost effective set in G.
k-cost-effective sets

Finally, we define a model that is the focus of the rest of this paper. It is a natural generalization of the concept of
cost effective sets as follows. Let k ≥ 0 be an integer. A vertex v in a set S ⊂ V is said to be k-cost-effective or kce
if |N (v) ∩ (V \ S)| ≥ |N (v) ∩ S| + k. A set S is k-cost-effective if every vertex in S is k-cost-effective. The lower
k-cost-effective number of a graph G, denoted cek(G), equals the minimum cardinality of a maximal kce set in G, and
the k-cost-effective number of G, C Ek(G), equals the maximum cardinality of a kce set in G.

From the above definition, it is clear that a 0ce set is a cost effective set and 1ce set is a very cost effective
set. Consequently, for every graph G, we have ce0(G) = ce(G), ce1 = vce(G), C E0(G) = C E(G), and
C E1(G) = V C E(G). Next we state some useful observations. Since every vertex of any kce set has degree at least k,

the following observation is immediate.

Observation 4. No vertex of degree less than k is a member of any kce set of G.

Observation 5. For every positive integer k, if G is a graph with maximum degree at most k − 1, then cek(G) =

C Ek(G) = 0.

Because of Observation 5, we will only consider k-cost-effective sets for graphs G when k ≤ ∆(G). For the
particular case k = ∆, it is clear that every kce set is independent and every vertex belonging to any kce set has degree
∆. Let V∆ be the set of vertices of maximum degree. The following observation is straightforward.

Observation 6. For every graph G, ce∆(G) = i(G[V∆]) and C E∆(G) = β(G[V∆]).

Since every (k + 1)ce set is also a kce set, we have:

Observation 7. For every graph G,

C E0(G) ≥ C E1(G) ≥ · · · ≥ C E∆−1(G) ≥ C E∆(G) > 0,

0 < ce0(G) ≤ ce1(G) ≤ · · · ≤ ce∆−1(G) ≤ ce∆(G).
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Observation 8. Every independent set in a graph without isolated vertices is a δce set.

According to Observations 7 and 8, we obtain the following.

Corollary 9. For every graph G without isolated vertices, C Ek(G) ≥ β(G) for every integer k, 1 ≤ k ≤ δ.

Proposition 10. For every graph G and integer k with 1 ≤ k ≤ δ, C Ek(G) + γk(G) ≤ n.

Proof. Let D be a kce set of G of cardinality C Ek(G). Since k ≤ δ, every vertex of D has a neighbor in V \ D.
Also, since |N (v) ∩ (V \ D)| ≥ |N (v) ∩ D| + k for every v ∈ D, V \ D is a k-dominating set of G. Hence,
γk(G) ≤ |V \ D| = n − C Ek(G). ■

As defined in [10], let G = H ◦ Kk , for some integer k, be the graph formed by a copy of a graph H and
|V (H )| copies of a clique Kk , where the ith vertex of H is adjacent to every vertex in the ith copy of Kk . Let Hi

denote the subgraph induced by the ith vertex of H and its copy of Kk . Clearly, δ(G) ≤ k, n = (k + 1) |V (H )|,
and γk(G) = k |V (H )| =

k
k+1 n (see Theorem 4, [11]). Moreover, every C Ek-set of G contains at most one vertex of

each Hi , implying that C Ek(G) ≤ |V (H )|. The equality is obtained from the kce set containing exactly one vertex
of each copy of Kk . It is worth mentioning that the same graph also provides the sharpness for Corollary 9 since
β(G) = C Ek(G) = |V (H )| .

On the other hand, one can easily see that both inequalities in Corollary 9 and Proposition 10 can be strict for
complete graphs of large order.

3. k-cost-effective sets and alliances

In [12], Kristiansen, Hedetniemi, and Hedetniemi introduced several types of alliances in graphs, including
defensive and offensive alliances. We are interested in a generalization of offensive alliances, namely global offensive
k-alliances, given by Shafique and Dutton [13,14]. Let k be an integer such that 0 ≤ k ≤ ∆. A set S of vertices
of a graph G is called a global k-offensive alliance if for every v ∈ V \ S, |N (v) ∩ S| ≥ |N (v) \ S| + k, that is,
every vertex of V \ S has at least k more neighbors in S than it has in V \ S. The global k-offensive alliance number
γ k

o (G) is the minimum cardinality of a global k-offensive alliance in G. Note that every vertex of degree less than k
belongs to every global k-offensive alliance of G. A global 1-offensive alliance is a global offensive alliance and a
global 2-offensive alliance is a global strong offensive alliance, as defined in [12–14]. A global k-offensive alliance S
is said to be minimal if for every x ∈ S, S − {x} is not a global k-offensive alliance of G. We define the upper global
k-offensive alliance number Γ k

o (G) as the maximum cardinality of a minimal global k-offensive alliance of G. As far
as we know, this parameter has not been previously defined.

Our aim in this section is to establish Gallai theorems involving the cost k-cost-effective and global k-offensive
alliance parameters.

Theorem 11. For every graph G without isolated vertices and for every non-negative integer k,

(a) C Ek(G) + γ k
o (G) = n,

(b) cek(G) + Γ k
o (G) = n.

Proof. Clearly, if k ≥ ∆ + 1, then cek(G) = C Ek(G) = 0 and γ k
o (G) = Γ k

o (G) = n, and so the results are valid.
Hence, we assume that k ≤ ∆.

Let D be a maximal kce set of G. Since G has no isolated vertices and |N (v) ∩ (V \ D)| ≥ |N (v) ∩ D| + k for
every v ∈ D, it follows that V \ D is a global k-offensive alliance of G. Thus, γ k

o (G) ≤ |V \ D| ≤ n − |D|. Since D
is any maximal kce set of G, we can choose it to be maximum and have that γ k

o (G) ≤ n − C Ek(G).
We next show that V \ D is a minimal global k-offensive alliance. If this is not the case, then there exists a vertex

y ∈ V \ D such that (V \ D) \ {y} = Y is a global k-offensive alliance of G. It follows that for every vertex x ̸∈ Y ,
|N (x) ∩ Y | ≥ |N (x) ∩ (V \ Y )| + k. But then D ∪ {y} is k-cost-effective, contradicting the maximality of D. Hence,
V \ D is a minimal global k-offensive alliance of G, implying that Γ k

o (G) ≥ |V \ D| = n − |D| ≥ n − cek(G).
Next we let S be a minimal global k-offensive alliance of G. Recall that every vertex of degree less than k belongs

to S. Since S is a global k-offensive alliance, |N (v) ∩ S| ≥ |N (v) \ S| + k for every v ∈ V \ S. Hence, V \ S a kce



M. Chellali et al. / AKCE International Journal of Graphs and Combinatorics 15 (2018) 211–218 215

set. Letting S be a minimum global k-offensive alliance of G, we have that C Ek(G) ≥ |V \ S| = n − γ k
o (G). Thus,

C Ek(G) = n − γ k
o (G).

Finally, we show that V \ S is a maximal kce set. Suppose to the contrary, that V \ S is not a maximal
kce set. Then there is a vertex x ∈ S such that (V \ S) ∪ {x} = X is a kce set, that is, for every v ∈ X ,
|N (v) ∩ (V \ X )| ≥ |N (v) ∩ X | + k. It follows that S \ {x} is a global k-offensive alliance of G, contradicting the
minimality of S. Hence, V \ S is a maximal kce set of G, implying that cek(G) ≤ |V \ S| = n − |S| ≤ n − Γ k

o (G).
Thus, cek(G) = n − Γ k

o (G). ■

As an immediate consequence, we obtain the following.

Corollary 12. For every graph G without isolated vertices,

(a) C E(G) + γo(G) = n.

(b) V C E(G) + γ 1
o (G) = n.

(c) ce(G) + Γo(G) = n.

(d) vce(G) + Γ 1
o (G) = n.

We note that since determining the number γ 1
o (G) for an arbitrary graph is NP-complete [15], it follows from the

previous corollary that computing V C E(G) is also NP-complete.

4. Bounds on the k-cost-effective number

Let A = {x ∈ V | degG(x) ≤ k − 1}, and let us denote by δ∗
= min{degG(x) | x ∈ V \ A}. Clearly, δ∗

= δ if
A = ∅, and δ∗

≥ δ + 1, otherwise. Next we present an upper bound for the k-cost-effective number C E(G) of a graph
G in terms of the order, maximum degree and minimum degree δ∗ of G.

Proposition 13. If G is a graph without isolated vertices, then

C Ek(G) ≤
∆n − |A| (∆ − k + 1)
∆ + ⌈(δ∗ + k) /2⌉

.

Proof. Let D be a C Ek-set of G. Since δ ≥ 1, if k ∈ {0, 1}, then A = ∅. Also, D dominates V \ A. Let F be the set
of edges with one end in D and the other in V \ D. Note that a vertex of A has at most k − 1 neighbors in D. Hence,

(k − 1) |A| + ∆ |V − (D ∪ A)| ≥ |F | ≥ k |D| +

∑
v∈D

⌈(
degG(v) − k

)
/2

⌉
≥ k |D| +

⌈(
δ∗

− k
)
/2

⌉
|D| .

This leads to

|D| ≤
∆n − |A| (∆ − k + 1)
∆ + ⌈(δ∗ + k) /2⌉

. ■

Corollary 14. If G is a graph without isolated vertices, then

ce(G) ≤ C E(G) ≤
∆n

∆ + ⌈δ/2⌉
.

Corollary 15. If G is a connected regular graph, then

ce(G) ≤ C E(G) ≤

{
2n/3 if ∆ is even,

2∆n/(3∆ + 1) if ∆ is odd.

Note that the previous corollary gives a partial answer to open questions in [1], namely, is ce(G) ≤ 2n/3 and is
ce(G) ≤ 3n/5? Clearly, the first question is true for every nontrivial regular graph, and the second one is true for
cubic graphs G. In fact, the bound on ce(G) can be improved for d-regular graphs G when d is odd.

Corollary 16. If G is a connected, d-regular graph and d is odd, then ce(G) < 2dn/(3d + 1).
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Proof. Let G be a connected, d-regular graph. By Corollary 15, ce(G) ≤ 2dn/(3d + 1). Suppose that ce(G) =

2dn/(3d + 1), and let S be a ce(G)-set. Then every vertex in S has at least (d + 1)/2 neighbors in V \ S. Hence,
((d + 1)/2)|S| = ((d + 1)/2)(2dn/(3d + 1)) = (d2n + dn)/(3d + 1) ≤ d|V \ S| = d(n − (2dn/(3d + 1))) =

(d2n + dn)/(3d + 1). It follows that every vertex in V \ S has exactly d neighbors in S, that is, V \ S is an
independent set. Also, every vertex in S has exactly (d + 1)/2 neighbors in V \ S and (d − 1)/2 neighbors in S.
But then no superset of V \ S is a cost effective set, that is, V \ S is a maximal cost effective set with cardinality
n − (2dn/(3d + 1)) < 2dn/(3d + 1) = ce(G), a contradiction. ■

Corollary 17. If G is a connected, cubic graph, then ce(G) < 3n/5.

Corollary 18. If G is a graph without isolated vertices, then

vce(G) ≤ V C E(G) ≤
∆n

∆ + ⌈(δ + 1)/2⌉
.

Corollary 19. If G is a connected regular graph, then

vce(G) ≤ V C E(G) ≤

{
2∆n/(3∆ + 2) if ∆ is even,

2∆n/(3∆ + 1) if ∆ is odd.

Next we show that d-regular graphs G have equal β⌈(d−k+1)/2⌉(G) and C Ek(G).

Theorem 20. If G is a d-regular graph, then for every integer k ≤ d, we have β⌈(d−k+1)/2⌉(G) = C Ek(G).

Proof. Clearly, if d = 0, then β⌈(d−k+1)/2⌉(G) = C Ek(G) = n. Hence, we assume that d ≥ 1. First let D be
a kce set of G of cardinality C Ek(G). Then every vertex of D has at most ⌊(d − k)/2⌋ neighbors in D. Since
⌊(d − k)/2⌋ = ⌈(d − k + 1)/2⌉ − 1, we deduce that D is a ⌈(d − k + 1)/2⌉-dependent set of G, implying that
β⌈(d−k+1)/2⌉(G) ≥ |D| = C Ek(G).

Now let S be a maximum ⌈(d − k + 1)/2⌉-dependent set of G. Since G[S] has maximum degree ⌈(d − k + 1)/2⌉−

1 = ⌊(d − k)/2⌋ and G is d-regular, it follows that every vertex x of S satisfies |N (x) ∩ (V \ S)| ≥ |N (x) ∩ S| + k.
Hence, S is a kce set and so, C Ek(G) ≥ |S| = β⌈(d−k+1)/2⌉(G). Therefore, β⌈(d−k+1)/2⌉(G) = C Ek(G). ■

Corollary 21. If G is a d-regular graph, then β(G) = C Ed (G).

Corollary 22. If G is a cubic graph, then β2(G) = C E(G).

We conclude this section by giving a lower bound on the global offensive alliance number for every graph without
isolated vertices. Indeed, according to Corollaries 12-(b) and 18, we obtain the following.

Corollary 23. For every graph without isolated vertices,

γ 1
o (G) ≥

n
1 +

∆
⌈(δ+1)/2⌉

.

5. k-cost-effective domination

In this section, we consider sets that are both k-cost-effective and dominating. A dominating set S is k-cost-
effective, or a kce dominating set, if every vertex in S is k-cost-effective. The k-cost-effective domination number
γkce(G) is the minimum cardinality of a kce dominating set of G. It is worth mentioning, according to Observation 4,
that not all graphs have kce dominating sets. For example, the corona of a nontrivial complete graph K p ◦ K1 do
not admit kce dominating sets for every k ≥ 2. The content of this section is divided into two subsections. In the
first one we establish a complexity result on k-cost-effective domination for each positive integer k, while the second
subsection is devoted to the class of trees.
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5.1. Complexity result

Our aim in this subsection is to determine the complexity of the following decision problem, to which we shall
refer as k-COST-EFFECTIVE DOMINATING SET.

k-COST-EFFECTIVE DOMINATING SET
Instance: Graph G = (V, E), positive integer p ≤ |V | .

Question: Does G have a k-cost-effective dominating set of size at most p?
We show that this problem is NP-complete by reducing the well-known NP-complete problem, Exact-3-Cover

(X3C), to k-COST-EFFECTIVE DOMINATING SET.
EXACT 3-COVER (X3C)
Instance: A finite set X with |X | = 3q and a collection C of 3-element subsets of X .
Question: Is there a subcollection C ′ of C such that every element of X appears in exactly one element of C ′?

Theorem 24. k-COST-EFFECTIVE DOMINATING SET is NP-Complete for bipartite graphs for each positive
integer k.

Proof. k-COST-EFFECTIVE DOMINATING SET is a member of NP , since we can check in polynomial time that
any set of vertices is a kce dominating set of G. Now let us show how to transform any instance of X3C into an
instance G of k-COST-EFFECTIVE DOMINATING SET so that one of them has a solution if and only if the other
one has a solution. Let X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct } be an arbitrary instance of X3C.

For each xi ∈ X , we create a vertex yi . Let Y = {y1, y2, . . . , y3q}. For each C j ∈ C , we build a graph
H j obtained from a double star Sk+1,k with support vertices v j and u j , and leaf neighbors {v j,1, v j,2, . . . , v j,k+1}

and {u j,1, u j,2, . . . , u j,k}, respectively, by adding a new vertex z j attached to each leaf neighbor of u j . Let Z =

{z1, z2, . . . , zt }. Now to obtain a graph G, we add edges u j yi if xi ∈ C j . Clearly, G is a bipartite graph. Let H be the
subgraph of G induced by all V (H j ) and set p = 2t + q. Observe that {v j , z j } is a minimum kce dominating set of
H j .

Suppose that the instance X, C of X3C has a solution C ′. We construct a kce dominating set D of G of size at
most p as follows. For every j ∈ {1, . . . , t}, if C j ∈ C ′, then put v j , z j and u j in D, and if C j ̸∈ C ′, then put v j

and z j in D. Note that since C ′ exists, its cardinality is precisely q , and so the number of u j ’s is q, having disjoint
neighborhoods in {y1, y2, . . . , y3q}. Now using the fact that C ′ is a solution for X3C, it is straightforward to see that
D is a kce dominating set of G with size q + 2t = p.

Conversely, suppose that G has a kce dominating set D of size at most p. Clearly,
⏐⏐D ∩ V (H j )

⏐⏐ ≥ 2 and v j ∈ D for
every j ∈ {1, 2, . . . , t}. Now if k ≥ 2, then z j ∈ D, and if k = 1, then D contains either z j or u j,1. Hence, without loss
of generality, we can assume that z j ∈ D. Consequently, |D ∩ V (H )| ≥ 2t , implying that

⏐⏐D ∩ {y1, y2, . . . , y3q}
⏐⏐ ≤ q .

Since |Y | = 3q , U = D ∩ {u1, u2, . . . , ut } ̸= ∅. Let |U | = a. Clearly, a ≤ q . Also, since each u j has exactly three
neighbors in {y1, y2, . . . , y3q}, it follows that q − a ≥ 3q − 3a and so a ≥ q. Therefore, a = q , and hence, no vertex
of Y belongs to D. Consequently, C ′

= {C j : u j ∈ D} is an exact cover for C . ■

5.2. k-cost-effective domination in trees

As mentioned above, not all graphs have kce dominating sets. For the case of trees, for k ≥ 2, a double star Sp,q

has a kce dominating set if and only if p ≥ q ≥ k + 1. From there, an interesting question arises regarding the
characterization of trees having kce dominating sets.

In what follows, we give a constructive characterization of the trees having kce dominating sets, for k ≥ 2. Since
any non-trivial tree T is a bipartite graph, it has a unique bipartition (X, Y, E). For k ≥ 2, we say that T is a ck-tree if
every vertex in one of the partite sets has degree at least k. Clearly, such a partite set of T is a kce dominating set. Let
T = (X, Y, E) be a ck-tree and X its kce dominating set.

For the purpose of the characterization, we define the family Tk to include all trees T that can be constructed from
r (r ≥ 1) ck-trees Ti = (X i , Yi , Ei ) with kce sets X1, . . . , Xr , by adding r − 1 edges, where each new edge joins two
vertices belonging to different sets, either Yi and Y j or X i and X j such that T is connected with the condition that the
total number of new edges incident with any vertex x of X p for each p is at most degTp (x) − k.
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Theorem 25. For any integer k ≥ 2, a tree T has a kce dominating set if and only if T ∈ Tk .

Proof. Assume that T ∈ Tk . Then T is obtained from r (r ≥ 1) ck-trees Ti = (X i , Yi , Ei ) with ckd-sets X1, . . . , Xr ,
by adding r − 1 edges, where each new edge joins two vertices belonging to different sets, either Yi and Y j or X i and
X j such that T is connected with the condition that the number of new edges incident with any vertex x of X p for
every p is at most degTp (x) − k. Clearly, X =

⋃r
i X i is a kce dominating set of T .

Conversely, assume that T has a kce dominating set, say S. Let F be the set of edges such that every edge of F joins
two vertices that are both in S or both in V \ S. Consider the forest H obtained by removing all edges of F . Obviously,
each of S ∩ V (H ) and (V \ S)∩ V (H ) is independent, and so each component Ti of H has partite sets X i = S ∩ V (Ti )
and Yi = (V \ S) ∩ V (Ti ). In this case, it is clear that each X i is a kce dominating set of Ti , which implies that every
vertex of X i has degree at least k, where k ≥ 2. Hence, each component of H is a ck-tree. Moreover, every edge of F
links two vertices that belong to different sets either Yi and Y j or X i and X j . It should be noted that since S is a kce
dominating set of T , the number of edges of F incident with any vertex x ∈ X i for some i equals degT (x) − degTi

(x),
which should not exceed degTi

(x) − k, for otherwise, x is not a k-cost-effective vertex in S. According to the previous
facts, we conclude that T ∈ Tk . ■

6. Open problems

1. Under what conditions is a C Ek(G)-set obtained by choosing a maximum independent set? This happens, for
example, with k-regular graphs, where β(G) = C Ek(G).

2. In Corollary 15 we show that the conjecture that cd(G) ≤ 2n/3 holds for connected regular graphs G of even
degree. Find other classes of graphs where this bound holds.

3. In Corollary 15 we show that the conjecture that cd(G) ≤ 3n/5 holds for connected cubic graphs G. Find other
classes of graphs where this bound holds.

4. An m-by-n grid graph is a graph of the form Gm,n = Pm□Pn , which is the Cartesian product of a path Pm and
a path Pn . It is easy to see that any maximum independent set in an m-by-n grid graph is a 2ce dominating set,
and it is easy to see that no grid graph has a 4ce dominating set. This raises the question: which grids, if any,
have 3ce dominating sets? For example, it is easy to see that no 2-by-n grid graph has a 3ce dominating set.
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