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FOREWORD

This document represents Volume I of the final report
on NASA Huntsville Contract entitled "Spin Vector Control
for a Spinning Space Station". The report is prepared in
two volumes:

Volume I -~ User's Manual

Jolume IT ~- Analytical Manual
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ASTRACT

This report constitutes the documentation of
a tachnlcal study for developing an efficlent com-
puter program Ior & restricted rorarional dynamies
problem involving multiple bodies connected by
movable joints, The configuration is particularl§
applicable to a space station system with a rotor
producing a‘larée spin vector. The computer program
is an effective tool for study of control of the

spin vector and effects of the spin vector on other

functions.
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I. INTRODUCTION

The object of thils study was to develop a means of investigating
the dynamic behavior of a dual spin space station., In particulax,
the extremely large spin vectdr of such & system presents control
problems as well as having cohplex and often intultively unexpected
influence on the response of the system to internal and external
forces. Emphasis was given to construction of an efficlent computer
program for simulating this system and functions relating to it.

Basically the program 1s an application of Russell's momentum
method of formulating and solvilng the equations of motion of 2 system
of rigld bodies connected by movable ioints. In the interest of
efficiency the method is not applied in full generality. Rather,-
the problem 1ls restricted to configurations and constraints that
are closely related to the actual space station systems that sre of
interest, Through cholces ¢f parameters and optionazl features in
the program, a sufficiently wide range of situations can still be
accommodated,

Primary features of the program are:

1,7 Rotor-stator confliguration with single degiee of freedom

bearing joint.

2, Complete generality in inertial parameters of both rotor

and stator.

- 3, Movable mags on rotor.



4, Nutation damping pendulums on rotor,

5, (MGs on stator,

6. Keaction jets on stator and rotor.

7. Attitude control by reaction jets or CMGs.

8. Transverse rate (nutation) removal by reaction jets,

9, Spin control by reaction jets and/or torque motor.

10, Flexibility of control functions by incorporation of

control laws in subroutines,

11, Gravity gradient effects.

12, Doceking capabilities,

Although the program was exercised extensively in order to
assure proper functioning, no exhaustive study of any problem
or aspect of spin vector behavior was made. In the course of
program check-out some interesting results were obtained and these

are described.



II. DESCRIPTION OF RUSSELL'S METHOD

Equations of motion pertaining to this problem are derived in
detail in Appendix B. 1In this section the general development of these

equations into a complete method of solution will be explained.

The application of Newton's law to a configuration of rigid
bodies as given in Figure 1 results in equations of motion as

follows.

Derivative of Total Angular Momentum

== 1]
"
]
+
3

2.1
1 0

h=Tl +T0-»1+T3¢—1+T4-b-]_+d13XF3->1
EXT
2,2,
+dy, ®RTF, Lyt Ez % Fy_py
Derivative of Angular Momentum of Pendulums
fy = Ty = by 2 Figt By = Ty - b, =%y,
Since Body 3 and Body 4 are poinik masses, h3 = h4 = 0 and
ﬁo = h4 = 0, for the pendulums then
— B - — - — ..
Ty = by ¥ Fipd Tipy 24 x Fiy 3
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In the Fuler method angular momenta are expressed in terms
of angular rates, The derivatives of angular momenta then
involve angular accelerations. The integration is carried out
or. the angular accelerations to obtain angular rates, At each
step the angular momenta can be obtained érom values of angular
velocity and a knowledge of geometric and inertial properties.

In Russell's momentum approach the integration is cﬁrxie&
out directly on angular momenta. The angular rates at each
step are obtained from the angular momenta.

The momentum method was selected for this program. Rela-
tively simple expressions for derivatives based on Equations
2,1, 2,2, and 2,3 are uged in the Integration. The problem
of obtaining values for angular velocities from values of
angular momentum obtained by integration will be resolved later.

Iin order to carry out the integration it is necessary that
terms on the right hand side of the derivative expressions
(Equations 2.1, 2.2 and 2.3) be determined entirely by infor-
mation available &t each point, That ig, in oxder to prpceed
to the next time point it is necessary that the derivatives can
be caleulated.

The terms T1 and To would have contributions from
EXT EXT

several sources:
1. Externally applied torques as given forcing functions

hich are known functions of time,



2, Externally applied control torgues depending by some
control law on geometyry and/or rates, A current
complete solution will be supplying geometric and
rate information from which these torques can be
obtained at each point.

3. Externally applled torgues depending on orientation
(gravity gradient). Again, the current geometric
informetion will permit caleulation of these forces
and torques &t each polnt,

The torques acting around the various hinge lines (Toth,

Ty 39 T ;) are all a result of control and/or frictiom
functions, These torques are determined at each point through

specific control laws from sngleée and angular rate data,

The remaining terms (d13 % Faays ,ﬂz X Fpop1s ﬂs x Fl-h-?»’

etc.) in Equations 2.1, 2.2 and 2,3 are all torques due to
interbody foxces. These terms will be dealt with in three
ateps:

1. Forces will be expressed in terms.of center of mass

accelerations (EI’ 52, 53, E&} through Newton's

law. For example,

L -

1’:'1___3 = m3(R + r3)


http:terms.of

The cluster center of mass acceleration is found from

the sum of all external forees

then
¥ Lot + 30 x %
Tyg = Mgl X Tg ¥ o= by X LaFpem

Through a change of variables the terms involving
these accelerations will be replaced by-terms
involving velocities only. Continuing the same
example, define

. .
hg Es ® maf,

then

e g £
[
n
W,I

. By
3"‘“’3’3"‘%3”5{‘&3“ Z?m

The replacement of mags center accelerations by
mags ceénter, velocities intréduces time derivatives

of other terms such as 4> 513, ete.



3. Finally, it 1s observed that velocities can be expressed
in terms of geometric configuration and angular rates,
Hence, the torgues due to interbody foreces are deter-
mined by known external forces and torgues and the
angles and angle rates,

In this modified form (see Appendix B, equations B5,3, B5.5) the
derivatives of angular momentum are determined by the known
external and interbody torques, the known external forces and
by -angles and angle rates. A procedure to obtain current values
for spgular rates from current values of angular momentum ig
clearly essentizl, It is also apparent that a concuryent inte-
gration of angle rates to obtain geomeiric reatures sucn as
gimbal angles and orientation is algo necessary in the scolution
of thig problem., The only remaining requirement for determina-
tion of derivatives at esch step iz the means of deriving angle
rates from angular momenta,

This procedure will now be degeribed. Angular"momentum
depends on geometry, inertial properties and angle rates,

For the system of rigid bodies in Figure 1 the angular momentum
exprasslions gre:

Total Angular Momentum



"pyeimed! Angular Momentum of Body 1

4—£3) x és + m

5.5 +nl xi, +mn@ .

1
1 11 272 2 34713

The center of mass distance vectors, Tgs Tys Ty = o o are
expressible in terms of various vector parameters d's, f's
(Figure 1 and appendix B equation B2.2). Consequently, the

center of mass velocities can be expressed in terms of deriva-

dygs

derivatives are in turn each determined by the angular rate of

tives of the geometric parameters.(301, £3, etc.). These

the body in which the parameter iz defined as a comstant. Fox

example,-&'o1 = @ xdy . When all these substitutions have
been made, the angular momenta will appear as sums of terms
with the following properties:
1. All terms are of first degree in angular velocity.
2. Aside from the angular velocity factors, no other
factoés in anyhtgrm are explicitly time derivatives
That is,-the other factors can all be evaluated
entirely from a knowledge of the inertial parameter.

and the current values of all angles.

(&14 +'Eh) x ;



It is necessary now to recognize that . the actual computation
must be done on scalar equatlons foxr the components of the
vector equations that have been uged up to.this point., Scalar
equations will be obtained for the following slx components of
angular momentum:

1. Hx % component of total H

i

2. Hy y component of total
3. Hz z component of total H
4, hix component of ﬁi around iue wecunstrained x-axis

of Body I
5. 8, component of Eé around the unconstrained hinge
line of Body 3
6. component of EA around the unconstrained hinge
line of Body 4
These six components of angular momentum are. expressed

as functions of the following six components of angular velocity:

1. w

Ox angular velocity of Body O around the Body O

X-axis

2. wa angular velocity of Body 0 around the Body O
y-axis

0z angular velocity of Body 0 around the Bedy O
z-axis

&, 91 angular velocity of Body L with respect to Bedy 0

angular velocity of Body 3 with respect to Body 1

11



6. ﬂh angular velocity of Bedy 4 with respect to Body 1

The six scalar equations for the components of angular
momentum in terms of the six angular veloclty components are
tediously long. However, since @'s occurred only n the first
degree in the vector equations, these scalar equatlons are linear
in the angle rate components. The six linear algebraic equations

will be stated as:

S _ -
.Hx “ox
Hy wa
By = M “oz
Pix %
g3 2,
8, % ]
or h = Mw

Then ¢» iz found from w = yflh. The elements of M are
caleulated (in EMCALC subroutine) entirely from inertial pro-
perties and a knowledge of thefgéomatry of the system (angles
and components of d.,, d ,,ﬁ ., ete.)., The -angles and h are

01 "13° 73
supplied by integration. Hence, the angular velocities can be

obtained and the integration loop is closed.

12 -



The¢ process can be summarized as follows:

1. At time t, glven hn, @ s gln’ 93n’ g&n’ calculate
h .
n
2, Up date to Eoat) by integratfon obtain hn+l’ Gl s
ut+l
8 , © .
3nﬁ1 4n+1
3. Set up M matrix from constants and Gl s 93 s
n+l n+l
6 .
4n+l

-1 .
4, Solve W4 = Mh+l hn+1'

- t .
5 Return tc step 1 for ol

Initially w and the geometric configuration is given.

.

Starting values for Hx’ Hy’ Hz and hix are computed from geo-
metry and w in XDOT, the derivative calculation subroutine,
which his to be called to supply the initial derivatives,
Initial values for gé.and gi are obtained by calculating M
and using the initial values of & in the last two equations
of h = Mw,

At each time point the orlentation of Bo&y 0 with respeect
to an inertial frame is updated by inteération of quaternion
parameters, The complete procedure is outlined in the flow
chart of Figure 3 and dlagrammed in Figure 4 in more detail,

Figure 4 also indicates the effects of the moving mass or

elevator (Body 2) and the (MGs. The moving mass contributes

13



to h and elements of the M matrix, The CMGe modify certain
elements of M and modify Hx’ I-ly and Hz before the solution

for w.

14
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111, PROGRAM STRUCTURE

A generzal view of the mein program will be presented with
reference to the flow chart Figure 5 ,

The RION gection initiates the read-in of data for each run
end stops the program when the last run has been complated.

The INPUT section reads in and prints out all input data for
egch Tun in accordance with the optiong that are included.

The Initializatfon section resets initial values of certain
variables, evaluates constants in accordance with input data and
calculates initial values for Integrated variables.

In th- Integration section the angular womenta and angle
variables -re updated in time by appropiiate subgtitutions 2nd use
of the FOM; integration subroutine. Docking impulse contributioné
to angular momentum are also made at this point,

The Quaternion gection is logleally a part of integration,
but involves considerably move substltutlons in the employment of
quaternion parameters. The FOMS subroutine is used for integration.
The result is an updating of the transformation from Body 0 to the
inertial frame,

in the CGRTM-section, control funecticns by CMGs and reaction
jets are activated in accordance with instruerion flags in the input
data.

Ir the INVERT section the M matrix is constructed by calling

the EMCALC subroutine, Countributions to the angular momentum by

17



terms due tc the movable mass and CMGs are mede at this peint. Then
the system of equations h = Mw is solved for the angular rates by
meking necessary substitutions and calling the subroutine SYEQNS.
éhere are two alternative routes here depending on whether the
pendulums are used, If pendulums are included, a set of six alge-
braic equations is solved, Otherwlse, a set of only four equations
is solved.

After the angulaxr rates have bggn found, time Is updated and
the derivatives of the angular momentum variables are caleulated
by calling XDOT. The calculation of these derivatives completes
the evaluation of all quantities pertaining to a point in time, and
the results are printed out in the OUIPUT saction., Again, the op-
tionsg included will determine the printout strueture,

Before returning to the integration sectlion for the next step,
checks are made to determine if the parametric modifications required

by dockiﬁg must be made and algo whether the run is finished,

18
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Iv. DESCRIPTION OF SPECIAL FEATURES

Restrictions and Assumptions

The various features and optlons of the program are subject
a nunber of restrictions and assumptions which will be listed
this section. Besldes providing a single convenlent access
such information, this section will also give an overall view
the capabilities of the program.

1.

Body. Configurations

Maximum of five bodies - the motion of one body
(Body 2, the movable mass) is completely constrained.

The program can be run withcut the pendulums and/or
without the movable mass.

If either the rotor or the stator is to be elimipated,
the mass and moments of inertia of the eliminated body
may have to be approximated by small values. If these
parameters are set to zero, the M matrix may be singular
or poorly conditlioned.

Gimbal Constraints

The joint between Body 0 and Body 1 is a single
degree of freedom bearing, The bearing axis is
parallel to the x-axis of Body 0 and coincident
with the x-axis of Body 1.

The hinges between Body 1 and the pendulums are
single degree 'of freedom., The hinge lines must be
parallel to the y-z plane,

Translational Motion

The orbit is circular with a radius specified in

the input data. The orbital position is obtained

by linearly incrementing the orbit angle with time in
accordance with a constant angular veloclty derived
from the radius, Variations in gravitational forces
due to non-uniform or non-spherical earth are not
accommodated. The orientation of the orbital plane
and position with reference .to the earth are not
specified.

20



Attitude Control by Reaction Jet

With the reaction jet attitude control scheme
employed in this program the maximum angle of
spin vector reorilentation that may be commanded
in a single maneuvex 1is 60°.

CMG

A maximum of silx CMGs can be located on Body O.

Each CMG may be zero DOF (reaction wheel), 1 DOF
or 2 DOF.

Movable Mass (Body 2, elevator)

Body 2 moves in a straight line in Bedy 1. The
motion is entirely comstrained and 1s determined
by the subroutines SCALC and SDCALC.

Reactlon Jets

Control is limited to the x, y and z axes of Body 0
and the x and y axes of Body 1. Torque on each
axils is produced by two oppesitely directed pure
couples 1dentical in position and strength. One
jet control gain (for all four jets) and one dis-

tance between jets (for both couples) cin be speci-
fied for each axis,

Second Rotor

The effects of a second rotor can be approximated
by a reaction wheel on Body 0. The reaction wheel
angular momentum would be adjusted to cancel the
angular momentum of the flrast rotor Body 1. This
approximation is in error due to lack of freedom

in positioning and due to incorrect distribution of
magsses,

Integration Step Size

The time increment may be selected. The choice
depends on rates encountered in the problem and
accuracy desired.

21



B, Movable Mass and Pendulums

The movable mass Body 2 and the pendulums Body 3 and Body &
are incorporated into the system at the very basic level of the
equations of motion., That is, the actual system equations of
motion are structured to imclude these bodies. Comsequently, these
bodies have already been considered in the detailed discussion of
the method and in the derivation of the equations of motion in
Appendix B,

Terms due to Body 2, Body 3 and Body 4 appear profusely
throughout the expressions for components of angular momentum
derivatives and in the formation of elements of the M matrix,
When these bodles are absent all of the terms due to them are
rendered ineffective by setting inm values of zerc for appropriate
mass and length parameters rather than being eliminated by pro-~
gramming,

22



C. Attitude Control by Reaction Jet

The basic approach to the problem of attitude control by use
of reaction jéts will be introduced with reference to Figure 6 .
Inltially the spin vector (x-axls of space station) is aligned with
Koy the x-axis of the Inertial frame. It 15 desired to reorient
the spin vector teo a direction glven by the vector e, which here
lies in the X, =¥y plane at an angle of a from the X, axis, The
deslred reorientation 1s accomplished by a simple rotatlion about
the z. axis. However, when a moderate torque is applied briefly to
the zZy axis, the path taken by the spin vector will be the nutation
cone A which misses the desired orientation by a wide margin.

In principal a 'brute force'" technique could be employed to
rotate the spin vector through the desired angle. A suffieiently
large torque applied ;bout the Zy axis would ensure that the pre--
dominént‘motion is essentially a rotation about the Zy axls, As
the direction . is approached, a large reverse torque is applied
to remove the transverse rate., Transverse rates remaining after
this cancellation can be remeoved by the normal propulsion control.

. Remaining direction error can be reduced by repeating this procedure.

Instead of using thils inefficlent method the approach emplcyed
here minimizes fuel consumption by utilizing the nutational coning
motion of the spin vector as part of the control policy. The

desired orlentation is approached by allowing the s3pin vector

to traverse a segment of free body nutational motion (auch as B

23



in Figure 6 ) resulting fxom application of certain torques. At
the termination of this path segment the spin vector direction

is substantially closer to e Regidual trangverse rates are
removed by the normal reaction jet control. The process is
repeated until the specified direction 1s approached as closely
as required.

The attitude control subroutine will now be discussed in
more detsil. Terms are defined in Table I.

A reorientation procedure will not be initiated unless
transverge angular rates are below some prescribed minimum
{ |W0(2)| and |WD(3)| less than .0002). Transverse rate removal
is glven priority-because these rates would interfere with the
attitude correction proceas.

If transverse rates are within tolerance, the spin vector
direction i1s compared to thé gpecified attitude direction vector
CA. 1In this program the attitude test is made on attitude vector
direction cosines.transformed to BODY0 coordinates (CB). If this
difference 13 within tolerance (<<:1°), no attitude correction by
reaction jets will be made,

This correctlon process is open loop. The vector CB is
not updated and no attitude error comparisons are made during the
process, The sensed attitude error is used only to establish

initial values and procegs parameters,

24
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Proceas initialization consists of storing the current 1is0
as TC, calculating normalized components CAl and C/2 of the pxo-
jection of the attitude vector CA in the Y-Z plane of BODYOD, and.
caleculating the torque magnitude AK required to produce the correction
path,

The required torque AK is estimated from simple approximate
geometxric and dynamiclrelationships. In Figure 7 the desired re-
orientation of the spin vector from X1 to Xon is a rotation through
the angle ﬂ . A nutation path of the H vector could pass near the
directions X1 and X0 if the gpin and trangverse angular momenta

H
gre related by sin B/2 ® Htransverse i

spin -

will be produced
transverse

by a torque AK acting for approximately 6 seconds, that is Htransverse =
6 AK. The required torque is then approximated by
AKX = 1/6 WL(1l) = BODYLI(1,1) - sin B/2.

The discussion will be continued with reference to Figure 38
a representation of the Y-Z plane of the TCI frame - a frame fixed
in inertial space colncident with the BODYO frame at the time that
the attitude coxrection process is initiated. The projection of
the desired direction vector on this plane is CAC, CAZ and CA3
are direction cosines of CAC. The projection on the Y&CI - Z

TC1
plane of the path which the spin vector direction takes due to appli-

'

cation of torque AK for the EimeJAtAK is the arc B. The direction

of torque AKX 1a obtained from CAl and CAZ,

- 26
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The projected path B shows that the spin vector does pass
close to the desired direction CAC, but it is necessary to apply
a torque to stop the nutational motion near CAC. The estimate
for the time of application of this second torque is obtained by
sensing the midpoint of the arc. For this purpose define an angle
B between the TCI y-axlis and the projection CAC. Note that cos/g
and sinﬁ<are already avallable as CAZ and CA3. In a frame obtained
by rotating TCI through an angle B around the TICI x-axis the z
component of the spin vector reaches its maximum excursion ZTC
at the midpoint of the arc B, The time at which ZIC is gensed
is the basis for timing the terminating torque near CAC. Note
that the direction of the terminating torque is the same as for
thé initi;ting torque since the direction of travel of the spin
veetor projection has reversed in the course of traversiné the
arc B,

At the time 2TMB-TMA when the terminating torque application
is complete, the normal propulsion control is restored. After
transverse angular rates are again removed, the process is re-
peated to bring the spin vector successively closer to the
spacified direction,

The reaction jets for removing transverse angular rates can
be located on either the statlonary or rotating body as provided
for in PCON. The toxques required for the correction process

itgelf, however, must be obtaired from jets located on the

28
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. RESET ALL ATTITUDE ——
APPLY END CORRECTION FLAGS
CORRECTION PROCESS COMPLETED

Flgure 9

*;‘J!

TORQUE & FORCE
SUBSTITULIONS

\L 65} EXIT

Attitude Control by Reaction Jet Flow Chart
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AKX
A0J(12)
CAZ

CA3
CB(3)

FAT(8)

ICFA
ICFB
ICFC
ICFD

Ic

TMC

ZTC

ZTCL

Table T Terminology in Attitude Control Routine

Caleulated estimate of torque for attitude correction
Reaction jet lever arms

Direction cosines of projection of attitude

vector in YZ plane of Body 0 at start of process
Attitude vector in Body 0 frame

Force equivalents for attitude correction torques

at reaction jetilever arms

Attitude correction process flag

> Process initialization flag

- Midpoint sense flag

Torque application flag

TIBO at start of process
Times asgoclated with application of toxques
Maximum excursion of spin vector from "diameter™

of correction path

Previous value of ZTC; used in sensing extreme value

of ZTC
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stationary body. This restriction is necessary because jets on
the rotating body will not in general be in the proper position
at the time that torque is required,

The attitude control by reaction jet feature was devised
to provide large changes in direction of the spin vector. This
regtriction is con;istent with the ;oarse tolerances. and crude
approximations applied. It is assumed that fine adjustments
to attitude and continuous accurate attitude control would be
supplied by CMGs.

The simple system simulated in this program is also limited
in the reorientation angle that can be accommodated in a single
command (a change in the vector CA). In order to avold algebraic
sign reversals that would disrupt the control process, the commanded
change in spin vector direction must be less than 90°, A margin
must also be provided for nutational path inaccuracles due to the
crude estimates used to eastablish control process parametexs.
Accordingly, & maximum spin vector reorientation angle of 60°
has been imposed for a command, Of course, attitude changes by
larger angles can be accomplished by a succession of several
commands .,

The simple reaction jet attitude contrel system presented
here is intended to be an example of one of the problems that
can. be handled by the program, It 1s recognized that considerable
improvement could be made in this.system and that other systems

may have superior performance.
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D, Angular Momentum Control Devices
The math model in this Section gives the angular momentum of

the kP

CMG about the center of mass (c.m.) of the CMG, expressed
in the Oth frame, Control commaqu £o the model wLll be gimbal
rate comnands é and 6, depending on the degrees of freedom
possessed by the CMG. These rates are integrated to keep trxack of
¢ and O,

Total mass of the CMG is to be considered as part of body 0
and located at the c.m., of the component. This point mass must be
incorporated into the mase and inertias of body 0. The total angular
momentum vector H of the (MG 1s to be expressed in the'gsﬁ_frame and
included with all other such quantities on the oth body to constitute
the angular momentum used in Rugsell’s equations,

Figure 10 shows the basic configuration necessary to desecribe

the reaction wheel, one degree-of-freedom (DOF) CMG, or two DOF

CMG. Considering the two DOF case, the gimbals are defined by ¢

H

and 9. EpE
. /
- /T OUTER
GIMBAL
L
= i
INNE R
GIMBAL

7
7
X

Figure 10
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When § and 9 are equal to zero, the axes of the whcel are aligned
to the zero gimbal frame (Cok)' The Cok frame is then related to
the Oth body frame by the éransformation [COKBOJ or by the inversge
relationship [gocok} .

Bach momentum device will contribute a2 momentum vector consist-

ing of two parts glven as

hok = fok + Eok?%' p-1
The f£irst part, fok’ is due to the commended gimbal rates while the
gecond part, Eck’ is due to the angular velocity of the oth body.
As explained in gection (II), the w's of the five main bodies are

realized by solving the equation.

Eok contributes to the M's and fok contributes to the h's.,

Before attempting to derive the equations several variables

need to be defined:

L. B, Body frame for Body 0.

2. Cox Null gimbal frame for kth device in body 0.

3. [GochJ Transformation from body O frame to B null gimbal
1

frame.
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4. [Bc,, ) mverse of [c B ].

5. hok Total momentum vector of kth device expressed
in oth frame.

6, Hk Total momentum vector of kth device expressed
in null gimbal frame.

7. & Angular momenﬁﬁm of the inner gimbal including

mass of the wheel (Cok frame).

8, Ho Angular momentum of the outer gimbal (an) frame,
9. H Angular momentum of the wheel (Cok) frame,
L0. —wx Angular rate of the null gimbal frame,
Yy
| “z
ok

11, Prime Frame Principle axes of the outer gimbal,

12, Double Prime Principle axes of the inner gimbal,

13. [pGokcok] Transformation from pull gimbal frame to
outer gimbal frame,

4. [C;kOGok] Inverse of [OGokcok]‘

15, [iGbkCok] Transformation from null to inner gimbal
frame,

16, [c 16 . 1nverse of [1c ,c 1.

17, Hok Momentum of the kth wheel., (Assume constant

for CMGs).
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18, I Inartia matrix of outer gimbal.

o]
9. I, Inertia matrix of inner gimbal including inertia
of wheel.
20, BB 0 0
[OGokcok] =10 cg  sp
_0 -Sp chl,
21. co sgse ~30CH
[16,C] |0 cp 58
L) -SpCo coce K

Two Degree-of-Freedom CMG

For the 2 DOF CMG, the total momentum will consist of three

perts

Hk = HI + Ho + H D=2
Fach component of Equation D-2 will be derived separately, They
then will be summed and the sum split into two parts; one part
a function of W s the other part a function of the gimbal rates
and wheel momentum,

The angular velocity of the outer gimbal frame is related

to the angular veloclty of the body O by

Ew']ok = [Osokcok] [CokBO] [wol' D-3

35



Therefore, the inertial rate of the outer gimbal iz equal to the
angular rate of the outer gimbal wék plus the gimbal xate ¢0k.

The angulay momentum of the outer frame Hé is then given as

ke

AN 2 MR O
expressad in the prime frame and as

[ do = [ep000 ] [
expregsed in the null gimbal frame, When expanded,

), = [eyo00, 3 [, {foe e le,3] [oJ+d,} o

Tha HI component of Equation D-2is obtained by applying a similar
approach., Angular rate of the inner gimbal is given in terms of the

body ra e w as
(0T = Do, d [ogpd [od.

The inectial rate of the inner gimbal is given as
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= .

© -

[wn]ok * [IGokOGok]

ok

and

[HEJOk - Ig] { [w"]ok + [IGokOGOk]

QO
S
»

ok
When expanded and expressed in the null gimbal frame, HI becomes

(it ) = [e00,,] [Ig]ok { [re e, ] [og2,] [u]

D-5

D+ D

+ [1e_, 0 , ]

ok

The third component H, of Equation D-2, can be obtained by
expressing the momentum of the wheel in the double primed system
and then transforming it to the null gimbal frame, Let the

momentum of the wheel be
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0
[H"] ok =10

w

gince the spin vector of the wheel 18 always along the Z" axis.

Therefore,

0

LR CREL I

H.“
=

This can be written as
sing

[H“’]ok = H |-cos0 sinf|

coa0 cosf

ok

when expressed in the null gimbal frame,

We now have the three components of Hk expressed in the null

gimbal frame., At this point we want to divide Hk into the component

due to @, and the part due fo gimbal rates as given in Equation D-2

Hok = Eokwo * fok'
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therefore, when the three components cf Equation D-2 are added to

th
expressed in the o £rame, the two ccmponents are

Eok - [Bocok] { [cokOGok] [Ic;]ok [OGokc.ok] [co]LcBo:l

D-7
* [CokIGOk] [I;] 1-'Ic'okco]zc] [CokBo } 4
Fok - [B‘ocok] {[Cokocok] [Ic;] 0
0 D-8
] se
+ [ 16,1 [1v] [me_oc,] |o| +u_ {-cess }
0 cecyd ok

One Degree-of-‘r"reedom MG

Equation D-2reduces to H’k = HI + HW for the one degree-of-
freedom (MG, and the angle # no longer exists. By setting @ and

@ equal to zero, Equation D-5 reduces to

[HI]OR " [COkIGO};l l:I£:|o]:< { [IGokCok] [cokBoJ l:{"’o]
D-9

0
+ [re_os 1 |0 }
0jck
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and Equation D-6 reduces to

50
[Hw]ok = Hz 0 D-10

co ok

Summing terms and expreseing in the oth £rame

= [3e ] { e e ,) [ [, c,] [CokBo]} D-11

E —
. . 0 [24s]
£ = Bocok]{ e 1¢,, [y [Ic;okonok] ol+u | o }
0 co
ok
D-12

Reaction Wheel

For the reaction wheel, there are no terms that are a function
of the oth body rates., Therefore, Eok is equal to zero. Also, since
0 and @ are equal to zero, Equation b-12 reduces, to

0

£, B,c, 1 H ok
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E. Integration Method

Components of angular moments, gimbal anéles nd quaternion
variables must be integrated in this program. In the interest
of obtaining computational efficlency some attention was directed
toward selection of an appropriate routine for updating all
these integrated variables.

Three metheds were consldered,

1., Predictor-Corrector

2. Runge-Kutta

3. Adams

A predictor-corrector method had been used in a previous
program (Ref, 3 ). Some machine-time analysis showed that
iterations of the lengthy calculations involved were very time
consuming. Consequently, & non-iterative method was sought
that would be accurate enough and yet avoid repetitions of
the long calculations for each step.

The Runge-Kutta method is non-iterative but does require
caleulation of derivatives at points between t and Eotl in
order to obtain the value of the variable at Eoage In many
applications the calculation of derivatives at the intermediste
points is not difficult and the improved accuracy easily offsets
this minor additional computation,

In the rotational dynamic problems treated by this program,

however, the calculation of derivatives is quite involved., The
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derivatives of angular momentum depend on angular rates. These
rates in tucn are found by constructing and inverting the matrix
which relates angular momenta to angular rates. 1In terms of this
program & derivative calculation would require entering the
INVERT BLOCK which calls the EMCALC and SYEQNS subroutines and
finally calling the XDOT subroutine, Apparently most of the
calculation for each step would have to be repeated for each
intermediate derivative. It is doubtful then that the Runge-
Kutta method can produce much improvement in speed over the
{terative predictor-corrector method,

The Adams method uses derivatives at tn’ tn-l’ e o « to
integrate to t ., (Ref. 4 ). Since derivatives at these
times have already been calculated for previous sfeps, it is
necessary only to store them for future calculaticns.

Comparisons were made between a 4th order Runge-Kutta and
a 2nd order Adams method in a rotational dynamics problem.
With the same value of At the Runge-Kutta was much more accurate
due to the higher order of approximation. However, when At
in the Adams program was reduced so that the accuracy of the
two programs became comparable, the Adams program §till showed
a distinct advantage in speed.

Some higher order Adams integrations were also investi-
gated."An increase in the order improves the aceuracy without

any appreciable increase in machine time. Serlous disadvantages
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arise though when the use of remote past derivatives produces &
delay that leads to poor transient response or even insgtabilities
in mome situations, Many problems could be computed more

effectively by & higher order Adams integrationm. However, since

this program is to be applied to =a wide variety of problems, it

ig advisable to remain with the simple second order Adams method.
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V. DISCUSSION OF RESULTS

A, Nutation Damping Pendulums

Preliminary nutation damping pendulum simulations were made
using moderately large pendulums disposed as follows on the rotor.

Length ~ 10 ft,

Mass - 100 slug

Center of rétor to hinge distance - 100 ft,
Even long runs (up to 1000 sec real time) with these large pendulums
failed to show & perceptible decrease in transverse angulax rates.

Obgexrvation of small changes in transverse rates was hindered
by the unsymmetric rotor. Angular rate variations introduced by this
lack of symmetry tend to obscure small changes due to other effects.

The possibility that stator pendulums would be more effective than
rotor pendulums was considered. With appropriate parameter values and
initial conditions thils type of run was made using the same pendulﬁms.
Again no change in transverse rates was apparent.

Reduction of At did not indicate that these results were due
entirely to instabilities introduced by computational exrors.

In order to exaggerate effects to observable levels, pendulums
of these extreme proportions were simulated.

Length -~ 200 ft.

Mags - 3000 slug

\

Rotor center to hinge distance - 300 ft.

Under these conditions the pendulums on the rotor produced definite
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Table 2 Parameter Values for Computer Runs

BOMASS = 2.6 x 107
1.4 x 107 0 0
BODYOL = 0 3.2 x 108 0
0 0 4.2 x 10°
L -
3
BIMASS = 3.8 x 10
6 x 10/ 0 0
BODYII = 0 6 x 10 0
0 0 6 x 106
DOL = 0
SP = .4
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B. . spin Control and Attitude Hold

There are many techniques available that can be used to
maintain the relative rotational rates between bodies 0 and
1 equal to a constant. The spin control loop that is con-
gidered in this report is basically a one actuator control
loop where the one acfuator consists of a direct electric
motor drive between the despun hub and the rotor. A control
law which drives the torque motor and adaptivély compensates

\

for frictiomal torques has been programmed in Subroufine

TORKO1 and is given by the following equations:
Tyotor = Bg 2y + £ 5-1

E=g (@ -0 ) 5-2,
3 1 1DESIRED

with the inftial conditions
£(0) = - g0 5-3

It is easy to show that the equilibrium occurs when

91 f QDESIRED and that this solution is independent of any

fricticnal toxques, A typleal sequence of events follows.

Aggume that the frictionsl torque suddenly increases, The
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result is a decrease in the apin rate 91 and a corresponding
increase Ln £, which is coupled via equation 5-1 to give an
increase in T, . 0o resulting in an increase in Q3 to the
deaired value. In this manner changes in friction are adaptively
compensated.

A gimple approximate analysis can be used to show how the
galns 89 and g, can be determined., Assuming that bodies 0 and

1 are sufficiently decoupled so that we can write Euler's

equation as:

.

leglx = (TMOTOR - friction) 5-4

IOxﬁbx = - (TMOTOR ~ friction) 5-5
recalling that

9, =Q +0 5-6

Substitution of equations (5-4) and (5-5) into 9., = Ql + 80y

yields

o (TMOTOR ~ friction) (TMOTOR ~ friction)

- 5-7
1 Tox Tix
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Differentiating (5-7) and assuming SCEEESEEON) o g yo oot

dt
ki - rlM’.OTOR - TMDTOR 5.8
1 I 1
0x 1x

Differentiating equation (5-1) and substituting into (5-8)

gives with some rearranging

's-i +!:10x + le]g 9 - [IOX * le]g Q = - [IOX - le:lg Q 5.9
1 onle 271 IOxllx 31 IOxle 3 "DESIRED

which 1s the desired result.

Equation (5-9) i1s a simple linear secopd order differential
equation. It is now an easy matter to choose the gains ) and
g3,to give'any desired dynamic response, Figure 11 shows a
typ%cal time response of Rl. The degired value of Ql was .4 rad/
sec while the mctual value was .39 rad/sec when the problem was
started, After an initial transient the actual and desired Ql

are approximately equal,

Once the relative angular rates between bodleg L ang v
are stabilized to some desired value there remairs the problem
of orienting body O in inertial space., A simple CMG control

law was used for this task., Two single degree of freedom
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CMGs were positioned on body Q so that there respective
momentum vectors in the null position are opposite each
other and perpendicular to the momentum vectox of the

body as is shown in the sketch below:

Haopy? Pror Hyopy

s Fa
Hovge Henel
Clearly,
Bror = Hpopy  Home 5-10
HCMG = ZHCMBlsin GCMG 5-11

pifferentiation of equation (5-11) ylelds

Houa = 2H 1008 ®ae Yo 5-12
As & control law for equation 5-12 let
5-13

Some ~ 2490 ¥ B5%0x
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Using the uncoupled form of Euler's equation and assuming that
the only torque acting on body 0 is that due to the CMGs the

following equation results

.- -

Loxdox = 2Bouet@® Cove (849x t 85%0y) 5-14

For small CMG angles cosQCMG:U 1 and equation (5-14) degenerates

to

.
~

9

1Ox 0x = 2H

oM %420k T 85%x 5-15

Equation (5-15) can be used to select the constants g, and 85

so that the dynamic response of @ .. 1s satisfactory. Using

Ox
value:: for Bl Bgs HCMGI’ IOx {5 shown below in Table 3

a comj uter run was initisted whose results are shown in figure 12

Table 3
Constant Value
g, -1
g5 -1
Homol 7.0 x 106 ft-1lb-sec
IOx 1.4 x 107 slug ft2

Figure 12 shows how the CMGs repositlons the angle ng from
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and initial offaet value of QOx = ,175 radians to the desired

value of GOx = 0 radians, This is simply a representative

run showlng how CMGs can be used to reposition or reoxient

the attitude of body 0.
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C. Propulsion Control

A demonstrarion of transverse angular rate reduction by use of
reaction lets was made for the standard space gtation configuration
(Table 2 ), <Control gains were - 2 % 105 and jet couple arm lengths
ware 200 ft,

With jets on the atator an initial transverse rate magnitude
was raduced by & factor of four in spproximately 30 sec. (Figure 13 )
The transverse rate raeduetion by stator.jets wds in good agreement
with results predicted by the formula given in’'the User's Manual
dascription of PCON.

The affect of an identical set of rotor reaction jets is shown
in Figure 14 , The transverse rate magnitude was reduced by a factor
of four in 100 sec. The rotor jet action is slower because the rotor
has jets on only one tramsverse axis, which due to rotatiom is at
timeé not oxilented properly for effective control. in terms of
total impulse required for a given reduction in transverse rates,
however, the effectiveness of rotor and stator jets was about the
same.,

In Figure 13 and Figure 14 it is seen that the stator acquired
a small spin axis rate (WO(Ll)) during the control action., A correspond-
ing change iﬁ spin rate of the rotor also occurred. Thesé rates
could have bean corrected by spin axis jets. Spin. axis control was
not applied in these runs -In order that transverse control comparisons

would not be Iinfluenced by spin axis control effects.
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D. Attitude Control by Reactlon Jets

The performance of the reaction jet attitude control
function 1s indicated in PFigure 15. Initially the spin .axis
is aligned with the inertilal x-axls (TIBO(1,1) = 1.0,
TIBO(2,1) = 0, TIBCO(3,1) = 0.) The directlion to which the
spin axis 1s to be reoriented has the directions in inertial
gpace CA(l) = .5, CA(2) = - ,612, CA(3) = .612,

The f£irst attitude correction segment was completed in
about 54 sec. The stator x-axis was rotated to a direction
glven by the direction cosines TIBO(l,1) = ,63, TIBO(2,1) = - .6,
TIRO(3,1) = .5. TFrom 54 sec to 90 sec residual transverse rates
were removed, and the gpin axis direction changed only slightly.

From 90 sec to 144 sec the second correction process occurre
The spin axis arrived at a direction in inexrtial space given by
the direction cosines TIBO(l,l) = .52, TIBO(2,1) = - .62,
TIBO(3,1l) = .6. Subsequent removal of transverse rates ocecurred
until about 174 sec.

A third correction maneuver was initiated, bu: was not com-~
pleted by the end of the run.

At the end of the 200 sec run the new direction of the spin
axis was within 3° of the specified reorientation direction.
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DIRECTION COSINES OF SPIN AXTS IN INERTIAL FRAME
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insktability. An initial transverse angular velocity wagnitude of
.02 rad/sec increased to more than .03 rad/sec in 150 ses, Pendu-
lums on the statoxr had & definite nutation demping effect., The
transverse rate magnituds decreased from .02 radfsac to 018 rad/sec
in 150 gec of real time,

These studies lead to the following conclusions:

1. Reasopably sized péndulum nutation dampers will not be
very effective,

2, This program is not an efficlent maana of studying
pendulum nutation dampers unless they are of im-
practically large propoxtions.,

3. The inertial configuration proposed is unstable with

autation damping pendulums on the rotex,
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APPENDIX A

THE QUATERNTON BOLUTION OF THE BODY TO INERYTTAL COOBDINATE TEARSFOERMATION

Consider two sets of coordinatesg systems whos: axes are denoted
by X,, ¥,, Z, and X, Yb’ Z, . Initially the two gcts of axes are
coindideiit, "By Eulgr'a theorem any rotation of the X , Y, , Z, system
may be expressed as a rotation through some angle, about some axis.
Suppose then that the X., Y, , Z_set is rotated th.ough an angle (the
positive direction of rotation Es given by the right hand rule) about
an axis whose direction cosines are cosa, cosfl and cosY relative to
the X,, ¥,, 2, set. Let Xps Ypo 2y be the Xb’ YE, Zb coordinates of

a vec%or %nd et’x,, Yys %4 be"the XI’ Y., Z_ coordinates of the same
vector, The trans%ormation matrix A of ﬁqua%ion A-1 18 required.
] S
1 *b
12y zy

It can be shownl that A is given by:

1-232 f sza 2(52-5 cacf Z(GacTsz £
2 2
P LA
s 5 e5 cY) + 8 7 ¢35 ef)
A= ngz % cacfl 1-232 % 326 2(32-g cfcy (A-2)
Bo K ' ek ok
+92c2c7) szczca)
2 (cacYs £ 2(32 £ efieY 1-2.92 £ 32‘)'
2 2 2
-g B E B E
| -5 3 e 3 cf) tsFes cor) |

A. C, Robinson, '"On the Use of Quaterrions in Simulatfon of
Rigid Body Motion", TR58-17, Wright Air Development Center,
Wright-Patterson AFB, Ohio, March 1960, pp 3-7.



In order to introduce the quaternion make the following sub-
gstitutions:

8y = ¢ 5y & = cos e, cf3s 53 € c¥s 5 (A-3)
The A matrix becomes
(2. 2 2 §
N + el - &, - & Z(ele2 - e0e3) 2(e1e.3 + eoez)
2 2 2 2
A= 2(e1e2 + eoe3) ey - e + e, - e, 2(e2e3 - eoel) _
2 2 2 2
2(ele3 - 24, 2(eze3 + eoel) ey - € - & + e,
The quaternion was invented by Hamilton in 1843. The quater-

nion q is composed of four parts,
q=qy+1q;+]1q+ka,

where q_, 9;- 4 and q., are real numbers and 1, i, and K are hyper-
imaginagy nitmbe¥s gatilifying the conditions

P
= -4t =k
jk = - kj = £
Ki= - ik = 4

The conjugate of the quaternion g is:

o =qy~1q ~3gq,- k 93+ The magnitude of ¢ 1s defined as

la] = (q*q)

A-2

(A-4)



Now that the quaternion is defined its use in coordinate

transformations will be developed. Define a quaternion Vb by

Vb = i xy + 3 Y4, + k Zy .

Now consider the quaternion product q V., g% where

q= e, + ie, + je2 + ke, ey ©1s &y, 85 aATE defined by

Equatgon A-3, Thén q Vbq* = (e0 + iel + jez + ke3)(ixb + jyb +ukzb)
(e, - ile, -~ je, - ke,). When this expression is expanded

using thé defined quaternlon operations the following is

obtained

2 2 2 2 .
q VBq* = [(eo “+- el - ez - e3) xb + Z(ele2 - e0e3) yb + 2(6133 —-eOeZ) zblz
2 2 2 2
+ [Z(ele2 + eoez) x + (eo - e + e, - e3) Yy + 2(eze3 - goel) Bb]j
. 2 2 2 2
+ [2(e1e3 - eoez) X + 2(5233 + e0e1) Yy, + (eo g - e, + e3) ab]k

Now if the A matrix of Equation A-4 i3 substituted into Equation’A-1 am
the indicated multiplication is carried out, the following expression
is obtained

-

i 2 2 2 2 7
xgw (eo + e - & - e3) Xy + 2(e1e2 - e0e3) v, +-2(e1e3 + eoez) zg

2

L, 2 2 2
zy Z(el_e3 - eoez) Xy + 2(e2e3 + eoel) Yy, + (eo -e - e + e3) z

e - e

The s Yy X of Equation A-6 are identical to the coefficients of i,
j and"k 1ii Eqiiation A-5. Hence, the quaternion multiplication qVBq*
accomplishes the same transformation as Equation A-l as long as

A-3

(A-5)

. 2 2, 2 -
yil = Z(ele2 + e0e3) X + (eo - e he, - e3) Yy + 2(32e3 - eoel) z3 (A-6)



i - =} e £ o E
ey ™ co8 7, ey cogsa 8in 71 cosfl sin 7 cosY gin 5

Define the quaternion V, by

VI = 1xi +'jyi + kzi.

Then
= = F3
Vi = qVpa* = qV,q

Noww consider two successive rotations of the s Y, system,
Tet the first rotation be defined by q,. Then suppose the
Xb, Yis Zb system 1s again rotated. L&t this rotation be defined .
by q, and x', y', z' denote the final position of the moving axes.
Note“that g, must be referenced to X, Y., Z_ and q, must be refer-
enced to Xb} Y. Zb. Let X, ¥,5 zi% xb£ ybE 2,3 x%, ', zé be
the X., Y., 2.3 X, Y., Z; Xé, Y!,”Z'; coordinates of the same

I b b? “b

vecto¥, Then define :

v, = :Lx1 +Jy, + kzi

!
n

B ixb + jyb + kzb

-3
n

' 1 1
B ixb + jyb + kzb.

= *
Vi = 43V

. Yq. %
Vg =-9pVpp
or

= ! =
Vy = q145Vp9%qy* = 4995V (9190

A-&



Thus the quaternion which defines the transformaticn from the
X.!'), ';, Zé system to the Xi, Yi’ Z:L system is SRR

Suppose the angular velocity of the rotating coordinate
frame 1s known in terms of the components of angular velocity
along the rotating cooxrdinates. Let P, Q, R be the X,E, Yb, Z
components of the angular veloclty. Let q(t) define the relagic_
ship between the rotating and the fixed coordinates at time t.
During time t to t + At suppose the moving set undergoes a rota-
tion of Au about an axis which has direction cosines cosa, cosf,
cos¥ with respect to the moving frame, The quaternion q(t -+ At)
which defines the transformation between the fixed and moving
frames at time t + At 1s required.

Now the transformation between the rotating frame at time
t and the rotating frame at time t + At is

qy = cos é2E+ sin -%—‘ (Lcosa + icosf + kecosY).

Since q(t) and da define successive rotations, gq(t + At) must be
q(t + 4) = q(t)q,.

Then
q(t +A4At) - q(t) = q(t)q, - q(t)

or

—Eq(t + At) - q(t) = q(t) |cos é-ZE + s8in ézf'-‘ (Lcosa + jcosfB + kcos‘Y)] - q(t)

As At ~»0, Au—+»0 s0 cos Q-ZE and sin -4-23 --b-éﬁz-

q(t + At) - q(t) = q(&) + q(tj‘% (icosu + jcosf + kcosy) - q(t.)

. A-S



or

dq(t) .. 1im

dt

At =0

q{t +At) - g(t) _ 1im ﬂ.(—t-)-%%'(icosa + jeosfl + keogY).

At 2
At =0

q(t) = % q(t) (1P + 1Q + kR).

‘o that

(De

+ 1

+J

+ k

I
]

..je

M

= --‘ (eO + :Lel + je2 +ke5) (1P + jQ + kR)

ieoP + jeOQ + keoR - ell" + kelo_

R-keP-e2Q+ie

1 5 2R + je3P - ie3Q - eR

1 1
=-3 (elp +e,Q + esR) +3 (eOP + e R - e,Q)1

2

l .
+-§- (eOQ - elk + eSP)j + (eoR + elq - ezP)k

Then the differential equations for the four components of the quater-
nion are:

Nl N DN =

(elP + ezq + e3R)

(eoP + ezR" - e3Q)

(eOQ - elR + eBP)

(eoR + e]_Q - ezP)



The initial conditions are e (o} = 1, el(o) =eg,{0) = e, (0) = 0,
since the moving and inertiaE system axe coinci?ient at £ = 0.

Thus, only four linear differential equations need be gsolved
to find the components of the quaternion. The A matrix can then
be determined from the components of the quaternion. Referring to
Equation A-4

a = e2 + ez - e2 - éz
11 0 1 2 3

a,, = 2(ele2 - 5%,y

845 = 2(e1e3 + eoe:z)

8,4 = 2(e1e2 + eoeg)

a =e2-e2+9.2-e2
22 0 1 2 3

Byq = 2(e233 - eoel)

8., = 2(ele3 - eoez)

C By = 2(eze + e ul)

32 3 it
a = e2 - 32 - e2 +-e2

33 0 1 2 3

The A matrix computed from the quaternion components will be
orthogonal if and only if the quaternion has a magnitude of unity. -
From the definition of the components of q(t) the magnitude of q(t)
ghould always be unity. However, the numerical intergration of
the differentlal equations for q(t) introduce errors which cause
~the magnitude of q(t) to differ from unity. g(t) may be kept at
unit magnitude by normalization at each intergration step. Nor-
malization is accomplished by dividing each component of ¢(t) by
the square root of the sum of the squares of the components.



APPENDIX B

DERIVATION OF DYNAMICS EQUATIONS

1., The Space Station Configuration

The eqﬁations of motlon governing the dynamics of a dual spin
space station will be derived by the momentum techniques as exploite:
by Ruésall»fl,Z] for an N-body spaceecraft, The space station con-
figuration is shown on Figure 1 and consists of a despun “(stator)
body and a rotating (rotor) body which contains two invexted pen-
dulums and an elevator. Active control will be employed between the
rotor and the stator to maintalin the correct spin rate of the rotor
and overcome the frictional torques between the rotor and the
stator. The attitude and nutation ccentrol will be achieved by
N .
control moment gyros In the stator and a suitable combination
of thrusters on both the rotor and the stator

The variables used in the formulation of the dynamics of the
space station are defined on Figur; 1, and with a few exceptioﬁs
is basieally the symbolism adopted by Russell loe. cit, The majo
agsumption involved in the formulation of the dynamics of the
space stétion ig that the two pendulums and elevator are point
masses, the infere?ée being that Lhey do not have any momenés
of inertia, In these cases the bas;ghxotggional:gzggg;cs for each
p;int.mass body is replaced by a static }orque balapce which

results in considerable gimplification of the dynamiecs,

B-1



2. Center of Mass Equations

From the definition of the center of mazs it follows that

mr. +mr, +mr,+mr +mr, =0 B2.1

070 171 272 373 474

The geometry of the multiple connected rigid body (see Figure 1)

yields:

=1 +d.+d._+/ B2.2

I T %0 T %o 14

Using equations B2.2 in equation B2.l determines EO in terms of

the multiple body vectors as follows,

m

ofo +my (g +30;) +my(Fy + g +2,) +my gy + 3, +13 +4

2

*'FM(En + &n1 + a1n +”£A) = 0,

Defining m = m, + my + m, +-m3 + m, the\above result can be re-

duced to:



ng, + (mem) &+ mby +my @y + L) 4w, @y +L) =0, B3

Substituting this result into equations B2,2 yleldr the local center
of mass vectors from th: total center of mags position in terms of

the multiple body vectors.

_omy o omd, omg @, Ly m, @, +ﬂ4)

r, = — g - — - —— [

1 m 01 m m m

- Mg +(1__T£)ﬂ'2hi‘ﬁ(dl3+g3)_m_é(d14+£4)- -,

2 m 01 m m *
m. d m m - m, (d +£)

- 0 01 22 3 = 4 14 4

s T w “m FA- (d13+£3)"?;?

z =f.9d01 .nlgz_fé(d13+£3)+(1-f‘i) @, +1)

4 m T m m m 14 23

3. Rectilineawm Dynamics

Tte rectilinear dynamics for the five body cluster depicted
on Figtre 1 are determined by the following vector differentisal

equaticns (Newton's Law).
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The external forces acting on the stator (0 body) and the rotor
(lst body) are denoted by %‘_Oa and -flﬁ respectively., The inter-

body forces are represented by F, , which is interpreted as the

==Y
the force due to the /uth body acting on the a-th body. Since every
force has an equal and opposite reaction this ylelds: the skew

v
1

relationship.

uy = " By oy

The vector sum of equations B3.l yilelds

mR+(m0r0+m1r1+mr +mr +n:44) ZF +%?1B



which reduces to

nR = %Foa - %Flﬁ 33.2
by virtue of the center of mass definition (32.1).

The primary purpose of equations B3.l 1s that they are used
to eliminate the unknown interbody forces which appear in éhe
rotational dynamics.

4, Rotational Dynamics

The rotational dynamics for the five body cluster are
governed by the following vector differential equations,

h0 = %aoa x F0a+ d01 X Fl-—o + 'I.']__”_0 B4.1

B4.2

The angular momentum vectors xror the Oth body and the ISt body

are denoted by EO and El respectively. ‘Using the same notation

ag for the interbody forces, the interbody toxques are reéresented~
by Tp¢7, with the equivalent relationship "'f."#_,__‘y = - -'f.y -—u

The torques due to gravity gradient will be represented by

appropriate external forces acting on the bodies of the cluster.



Since we are dealing with polint masses for the inverted
pendulums, the rotational dynamics degenerate into a static

balance of torquesl

1~3 3 1 =3

B4.3

The total angular momentum for the cluster of five bodies

is defined by

and is governed by the differential (Euler's) requation

—

T = 2;(r0 +8y,) X Fy + 2.&,(::l + alB) x Fyg B4.5
The rotational dynamics of the space station will be’
governed by the unconstrained components of the vector equations
B3.1.(3), B4.2, B4.3 and B4.5., Physically the dynamics of the

stator and rotor are given by equations B4.2 and B4,53; and

equation B4,5 1s chosen rather than equation B4.1 gince it

B-6



avolds some of the constraint problems between the stator and the
rotor. The effects of the elevator on the dynamics of the space
station are inherent in the interbody forcesz of equation B3.1(3).
The unconstrained component of this equation can be used to
control the motion of the elevation, however, for this study we
shall ignore the elevator control problem and determine the effects
of prescribed elevator motions on the stability of tha space
station., ¥Finally, the effects of the inverted pendulums are
determined by equation B4.3.

Tor these equations the unknown interbody forxces have to
be eliminaéed and the equations for the unconstrained components
"recast into normal form sultable for numerical integration. This
basically is the momentum technique.

5. The Momentum Method

The unknown interbody forces are eliminated from the appro-
priate rotational dynamic equations by means of the rectilinear

dynamic equations B3,l. Treating equation B4,2 first, and

—

eliminating the interbody torques T3->1 and T&*bl in addition

to the interbedy forces yields

hy= -4, x5, +my(d), + D) x 7y - m g, + £4) x 7,
- F

N Oa

-] mpby + mytayg + by +may, + f@_] % (Za] 22

F
+ Z—ié) + Ealﬁx F

+ T
6] 18

01 B5.1



If we define

h]l. = hl + mzﬂz X T, + m3(d13 + 'QS) X T, + m{_.}(dl4 + ,@4) X T, B5.2

which represents the angular momentum of the rotox, elevator and
inverted pendulums sbout the hinge point between t7e rotor and

stator, then equation B5.1 car be put into normal form as

dh' z - - ; » » Ll
1 L L : : :
I mZBZ x x, + 1:(13(dl3 + .23) X ¥y + m4(d14 - 34) xx,

b
- [mpd, + my @y "'13) +mydy, + £,)] = <§-%‘3
+ Z-F—lﬁ + Foq+ T B5.3
= "n ) T SR 1 ot :

Equation B4.3(l) for the inverted pendulum reduces to
T1+3 = £3 x m3(R + r3)

7 T 7 ) - -

.23 X mT, +B3 x;—(%F + %F

Defining

E§=£3'xmf BS.4



raduces the pendulum equation to

ah!  : . p m
9 L 3 - —_ - .
o = ES X My, -.ﬁs % E—-(Za FOa + %Flﬁ) + Tl—l—B B5.5
Similaxly by defining
-_1 - a2 .
Ry =L, xmz, B5.6
the second pendulum equation becomes
gh! 3 - m
4 : R g™ - -
= d ey, - L x 2 (Eoc:FOa + %Fm) +T,_,, B5.7

Therefore, the unconstrained components of equations B5.3, B5.5
and B5.7 together with equation B4,5 represents the rotational
dynamics for the space statién. The total angular momeptum
differential equation will be,expréssed in the stator (0th body)

coordinate system, therefore equation B4.5 becomes

a-€+w0x‘H= ;(r0+a0)x1?0 + '26_:(1'1+a1)x1?‘1

If we substitute for EO by equatfon 2.3 and El by equation 2.4

then the above reduces to

B-9



LTGAPAE B (mmg) - Mty Mg +45) By, +4,)
dt 0 - m 01 m m m
m m m (@, +L) =m (@ +£)
- = 0 5 22 T3¥13 T30 e T3
+ Bpad % o.ﬁ%[;ﬁdm"a‘ iy ey
+ am] x ¥4 B5.8

Similarly the Ei angular momentun and the inverted pendulum equations
will be expressed in the rotor (bedy 1) coordinate system, so that
equations B5.3, B5.5 and B5.7 become

! z
dh}

Sy oo s * 7 ) b4 7 ot
I +w1 x hl mzﬁz x T, + m3(d13 +£3) z 1, + mé(dm_ +E4) % 1,

. - 7 ¥
- [mgby +my@py + by +mcay, + 4] x (Za:"gg + % "'xil.?'é)

+ Zamx 18+ Toom1 B5.9
dﬁ' ':’ - - m
—_—2 & xRl = r - 3 7 ¥ T
= | X h3 £3 X Xy ﬂs X~ (% FOa + %Flﬁ) + T1-e-3 B5.10
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To develop the unconstrained components of these equations the
relative orlentations and kinematrics for the cluster of bodie:
must be defined,.

pefine J = mzﬂz rmg@, v Ly +m @, + L)

Then B5.8 can be written as:

RN XHH--(-—---‘m dOI-j)anJFOQ

B5.12
and B5.9 can be wriltten as:

dhi! + & xh! =m i x T, +m,(d

, *x A= mdy x5, +om, +E)xr+ (& ﬂ4)x§4

13

...:.Ln; (}:F +ZFB)+ Za PERITRE

which can be written

5%1 +6 x By =7 x[- mzlz my(dy, + ﬂs) m, (dy,, + ﬂz;)]
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Apply equations B5.10 and B5.11 to find the components along
the unconstrained hinge lines of the pendulums.
Unconstrained component along 84 axis
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Unconstrained component along s 4 axis
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APPENDIX C

GRAVITY GRADIENT EFFECTS

In this Appendix a derivation will first be outlined of
‘the expression for the gravify gradient moment about the mass
center of a single vehicle segment. The total gravity gradient
moment about the mass center of a cluster is regarded as the
gum of the individual moments thus compﬁ£ed for the segments,
plus a moment due to differential forces acting at the mass
centerg of those seg;ents. The differential force expression
is then derived under the assumption th;L the entire mdass of
s segment is‘locatedlat its center of mass, and results from
the difference in position within the gravitational fileld of

the ‘segment's mass center and that of the cluster as a wholel

1. The Gravity Gradient Moment on a Single Segment

Consider Figure C-1, with §; being the radius vector from
the center of the earth and r, that from the centexr of mass
of the body to an inecrement of mass dm.

The force on dm #s then

R
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The resulting moment is

@E;xam;u%EE

R

Making the substitutions R = ﬁ; +  and

R = {(§o+i) - ® 4 D)

we can write the moment as

c-2
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udm T x (EQ + 1) §§£ "
dM = - 3 1+———3—— . (C=3)
R R
o o
Since T x (ﬁ; + ) =1 x R, and
— . 3 —_ .
2R ° ¥ & \” 2 3R, " ox
L+ g R\l - — for r << R s
R Rb Rb

we can Iintegrate (C-3) over the entire body to get the approxi-

mate expression

urx ig _ig e T
M = g 1- —7 dm, (G~4)
Bj o} °

Expanding and noting that f rdm = 0,
Bj

(C-4) can be reduced to the form

r‘
I R x F)(F ~ R -
M= - R; “, (Rb x £)(x Ro) dm., (C-5)
0 Bj

If thls vector equation is written Iin matrix form, referring

all vectors to the body~fixed B

j-frame, and the indicated

Cc-3



integration carried ou:, we arrive at the degired expression

(3x1)

L
M o= -2z

(3x3) (3x3) (3xlﬁ

R 1, [r

3 o (C-6)

ol

where [Ro] 1s the mat:iix expression of R 1In the Bj-fxame, and

R iz the cross product matrix obtained therefrom:

- .
0 ~R R
o o
z y
R=} R 0 ~-R
o o_-
Z %
-R R 0
o o
y pid

and Ij ig the convent: nal moment of inertia matrix of Body J
in texms of the Bj-frume. Equation (C-6) is used in the gravity
gradient subroutine in the form ghown.

2. Differentlal Force on Body J

Conglder Figure C-2, where Ej denotes the vector from the
mass center of the cluster to that of Body J, having mass mj.

The total force on Body J is

by
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Following a procedure similar to that of paragraph ]l above,

the approximation

um 3 *r
F rg--——-—i R +rx R § il (C-7)
3 3 o | 2 o S
R R .
0 ) -
is obtained, valid for %y < R_.
umR
Since - -——3;1——9- is the gravitational force on B i that would
R
oceur Lf T 4 were zexo, the desired differential force is simply
. um 3R - r )
$F. = ~ et {F, « =2 AT, (C-8)
h| R3 5 RZ o
o o

- The matrix equivalenf of Equation (C-8) is used In the Gravity

C~5



Gradient Subroutine.
The derivation of components of the vector R.0 in the frames

of Body O and Body 1 will be described with reference to Figure

C"'s - ZI
B OREBIT
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7 ﬁfEF“
go
Xt
YT
Figure C-3

The translational motion is restricted to a circular orxbit
in the XIin plane. The origin of the I frame coincides with
the center of the eaxth, The orbit angle isg measured from the

+ YI axis. The vectoxr E; is easily expressed In the I frame as

-86
o

R ] = lR ‘ cB
0 Lo} o
I Frame

0
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Asplication of the inverse of the TIBO transformation will then
give the components in the Body O frame. The components of a
unit vgctor §;/|Rb| are designated as DB(1), DB{Z) and DB(3)

at the beginning of the subroutine. For the Body 1 calculations

these components are expressed in Body 1 coordinates through the

A transformation.
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