244 research outputs found

    Dopant Profile Extraction by Inverse Modeling of Scanning Capacitance Microscopy Using Peak dC/dV

    Get PDF
    Scanning capacitance microscopy (SCM) has proven to be successful for junction delineation. However quantitative dopant profile extraction by SCM still remains a difficult challenge, due to limited understanding of relevant physics especially at p-n junction, as well as difficulties to accurately quantify all parameters in modeling. In this paper we present a new procedure, the use of peak dC/dV at every spatial point, for dopant profile extraction. The advantage of such a technique is twofold. First it eliminates problems encountered using a fixed dc bias such as contrast reversal. Second, it also excludes the need to model interface traps. This is because the peak dC/dV value is independent of the presence of interface traps, as demonstrated in our experimental results. Furthermore, based on our understanding of the influence of mobility degradation at p-n junction, we propose that low surface mobility model should be used in simulation so that only the accumulation-to-depletion dC/dV is extracted

    Monitoring oxide quality using the spread of the dC/dV peak in scanning capacitance microscopy measurements

    Get PDF
    This article proposes a method for evaluating the quality of the overlying oxide on samples used in scanning capacitance microscopy (SCM) dopant profile extraction. The method can also be used generally as a convenient in-process method for monitoring oxide quality directly after the oxidation process without prior metallization of the oxide-semiconductor sample. The spread of the differential capacitance characteristic (dC/dV versus V plot), characterized using its full width at half maximum (FWHM), was found to be strongly dependent on the interface trap density as a consequence of the stretch-out effect of interface traps on the capacitance-voltage (C-V) curve. Results show that the FWHM of the dC/dV characteristic is a sensitive monitor of oxide quality (in terms of interface trap density) as it is not complicated by localized oxide charging effects as in the case of the SCM probe tip voltage corresponding to maximum dC/dV. The magnitude of the dC/dV peak, at any given surface potential, was also found to be independent of the interface traps and only dependent on the substrate dopant concentration, which makes SCM dopant profile extraction possible

    An Energy Dependent Model for Type I Magnetic Contrast in the Scanning Electron Microscope

    Get PDF
    The modelling of the magnetic contrast phenomenon in the scanning electron microscope (SEM) is important in understanding the physics of the contrast mechanism and the associated signal detection. In this paper, we report an improved analytical model for Type I magnetic contrast calculations using an approximate form of the Chung and Everhart secondary electron (SE) energy distribution. Previous studies have neglected this factor by assuming a mono-energetic model in order to simplify the calculations. This new model can be used to study different material specimens by appropriate choice of the work function and field-distance integral. The effect of energy filtering on the Type I magnetic contrast and quality factor can also be studied with the improved model by substituting the low and high energy limits of the filtered SE distribution into the closed-form analytical expressions obtained. Results of the above-mentioned effects and the effect of collector aperturing are reported in this paper using the new improved energy dependent model

    A staged approach with vincristine, adriamycin, and dexamethasone followed by bortezomib, thalidomide, and dexamethasone before autologous hematopoietic stem cell transplantation in the treatment of newly diagnosed multiple myeloma

    Get PDF
    Bortezomib-based regimens have significant activities in multiple myeloma (MM). In this study, we tested the efficacy of a total therapy with a staged approach where newly diagnosed MM patients received vincristine/adriamycin/dexamethsone (VAD). VAD-sensitive patients (≥75% paraprotein reduction) received autologous hematopoietic stem cell transplantation (auto-HSCT), whereas less VAD-sensitive patients (<75% paraprotein reduction) received bortezomib/thalidomide/dexamethasone (VTD) for further cytoreduction prior to auto-HSCT. On an intention-to-treat analysis, a progressive increase of complete remission (CR) rates was observed, with cumulative CR rates of 48% after HSCT. Seven patients progressed leading to three fatalities, of which two had central nervous system disease. The 3-year overall survival and event-free survival were 75.1% and 48.3%, respectively. Six patients developed oligoclonal reconstitution with new paraproteins. In the absence of anticoagulant prophylaxis, no patients developed deep vein thrombosis. The staged application of VAD+/–VTD/auto-HSCT resulted in an appreciable response rate and promising survivals. Our approach reduced the use of bortezomib without compromising the ultimate CR rate and is of financial significance for less affluent communities

    A selected ion flow tube study of the ion-molecule reactions of monochloroethene, trichloroethene and tetrachloroethene

    Get PDF
    Data for the rate coefficients and product cations of the reactions of a large number of atomic and small molecular cations with monochloroethene, trichloroethene and tetrachloroethene in a selected ion flow tube at 298 K are reported. The recombination energy of the ions range from 6.27 eV (H3_3O+^+) through to 21.56 eV (Ne+^+). Collisional rate coefficients are calculated by modified average dipole orientation theory and compared with experimental values. Thermochemistry and mass balance predict the most feasible neutral products. Together with previously reported results for the three isomers of dichloroethene (J. Phys. Chem. A., 2006, 110, 5760), the fragment ion branching ratios have been compared with those from threshold photoelectron photoion coincidence spectroscopy over the photon energy range 9-22 eV to determine the importance or otherwise of long-range charge transfer. For ions with recombination energy in excess of the ionisation energy of the chloroethene, charge transfer is energetically allowed. The similarity of the branching ratios from the two experiments suggest that long-range charge transfer is dominant. For ions with recombination energy less than the ionisation energy, charge transfer is not allowed; chemical reaction can only occur following formation of an ion-molecule complex, where steric effects are more significant. The products that are now formed and their percentage yield is a complex interplay between the number and position of the chlorine atoms with respect to the C=C bond, where inductive and conjugation effects can be important

    Systematic Identification of Placental Epigenetic Signatures for the Noninvasive Prenatal Detection of Edwards Syndrome

    Get PDF
    Background: Noninvasive prenatal diagnosis of fetal aneuploidy by maternal plasma analysis is challenging owing to the low fractional and absolute concentrations of fetal DNA in maternal plasma. Previously, we demonstrated for the first time that fetal DNA in maternal plasma could be specifically targeted by epigenetic (DNA methylation) signatures in the placenta. By comparing one such methylated fetal epigenetic marker located on chromosome 21 with another fetal genetic marker located on a reference chromosome in maternal plasma, we could infer the relative dosage of fetal chromosome 21 and noninvasively detect fetal trisomy 21. Here we apply this epigenetic-genetic (EGG) chromosome dosage approach to detect Edwards syndrome (trisomy 18) in the fetus noninvasively. Principal Findings: We have systematically identified methylated fetal epigenetic markers on chromosome 18 by methylated DNA immunoprecipitation (MeDIP) and tiling array analysis with confirmation using quantitative DNA methylation assays. Methylated DNA sequences from an intergenic region between the VAPA and APCDD1 genes (the VAPAAPCDD1 DNA) were detected in pre-delivery, but not post-delivery, maternal plasma samples. The concentrations correlated positively with those of an established fetal genetic marker, ZFY, in pre-delivery maternal plasma. The ratios of methylated VAPA-APCDD1(chr18) to ZFY(chrY) were higher in maternal plasma samples of 9 male trisomy 18 fetuses than those of 27 male euploid fetuses (Mann-Whitney test, P = 0.029). We defined the cutoff value for detecting trisomy 18 fetuses as mean+1.96 SD of the EGG ratios of the euploid cases. Eight of 9 trisomy 18 and 1 of 27 euploid cases showed EGG ratios higher than the cutoff value, giving a sensitivity of 88.9% and a specificity of 96.3%. Conclusions: Our data have shown that the methylated VAPA-APCDD1 DNA in maternal plasma is redominantly derived from the fetus. We have demonstrated that this novel fetal epigenetic marker in maternal plasma is useful for the noninvasive detection of fetal trisomy 18. © Tsui et al.published_or_final_versio

    Circulating plasma concentrations of ACE2 in men and women with heart failure and effects of renin-angiotensin-aldosterone-inhibitors

    Get PDF
    Aims: The current pandemic coronavirus SARS-CoV-2 infects a wide age group but predominantly elderly individuals, especially men and those with cardiovascular disease. Recent reports suggest an association with use of renin–angiotensin–aldosterone system (RAAS) inhibitors. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for coronaviruses. Higher ACE2 concentrations might lead to increased vulnerability to SARS-CoV-2 in patients on RAAS inhibitors. Methods and results: We measured ACE2 concentrations in 1485 men and 537 women with heart failure (index cohort). Results were validated in 1123 men and 575 women (validation cohort). The median age was 69 years for men and 75 years for women. The strongest predictor of elevated concentrations of ACE2 in both cohorts was male sex (estimate = 0.26, P &lt; 0.001; and 0.19, P &lt; 0.001, respectively). In the index cohort, use of ACE inhibitors, angiotensin receptor blockers (ARBs), or mineralocorticoid receptor antagonists (MRAs) was not an independent predictor of plasma ACE2. In the validation cohort, ACE inhibitor (estimate = –0.17, P = 0.002) and ARB use (estimate = –0.15, P = 0.03) were independent predictors of lower plasma ACE2, while use of an MRA (estimate = 0.11, P = 0.04) was an independent predictor of higher plasma ACE2 concentrations. Conclusion: In two independent cohorts of patients with heart failure, plasma concentrations of ACE2 were higher in men than in women, but use of neither an ACE inhibitor nor an ARB was associated with higher plasma ACE2 concentrations. These data might explain the higher incidence and fatality rate of COVID-19 in men, but do not support previous reports suggesting that ACE inhibitors or ARBs increase the vulnerability for COVID-19 through increased plasma ACE2 concentrations

    Using matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling in order to predict clinical outcomes of patients with heart failure

    Get PDF
    Background Current risk prediction models in heart failure (HF) including clinical characteristics and biomarkers only have moderate predictive value. The aim of this study was to use matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling to determine if a combination of peptides identified with MALDI-MS will better predict clinical outcomes of patients with HF. Methods A cohort of 100 patients with HF were recruited in the biomarker discovery phase (50 patients who died or had a HF hospital admission vs. 50 patients who did not have an event). The peptide extraction from plasma samples was performed using reversed phase C18. Then samples were analysed using MALDI-MS. A multiple peptide biomarker model was discovered that was able to predict clinical outcomes for patients with HF. Finally, this model was validated in an independent cohort with 100 patients with HF. Results After normalisation and alignment of all the processed spectra, a total of 11,389 peptides (m/z) were detected using MALDI-MS. A multiple biomarker model was developed from 14 plasma peptides that was able to predict clinical outcomes in HF patients with an area under the receiver operating characteristic curve (AUC) of 1.000 (p = 0.0005). This model was validated in an independent cohort with 100 HF patients that yielded an AUC of 0.817 (p = 0.0005) in the biomarker validation phase. Addition of this model to the BIOSTAT risk prediction model increased the predictive probability for clinical outcomes of HF from an AUC value of 0.643 to an AUC of 0.823 (p = 0.0021). Moreover, using the prediction model of fourteen peptides and the composite model of the multiple biomarker of fourteen peptides with the BIOSTAT risk prediction model achieved a better predictive probability of time-to-event in prediction of clinical events in patients with HF (p = 0.0005). Conclusions The results obtained in this study suggest that a cluster of plasma peptides using MALDI-MS can reliably predict clinical outcomes in HF that may help enable precision medicine in HF

    A Study of the Influence of Sex on Genome Wide Methylation

    Get PDF
    Sex differences in methylation status have been observed in specific gene-disease studies and healthy methylation variation studies, but little work has been done to study the impact of sex on methylation at the genome wide locus-to-locus level or to determine methods for accounting for sex in genomic association studies. In this study we investigate the genomic sex effect on saliva DNA methylation of 197 subjects (54 females) using 20,493 CpG sites. Three methods, two-sample T-test, principle component analysis and independent component analysis, all successfully identify sex influences. The results show that sex not only influences the methylation of genes in the X chromosome but also in autosomes. 580 autosomal sites show strong differences between males and females. They are found to be highly involved in eight functional groups, including DNA transcription, RNA splicing, membrane, etc. Equally important is that we identify some methylation sites associated with not only sex, but also other phenotypes (age, smoking and drinking level, and cancer). Verification was done through an independent blood cell DNA methylation data (1298 CpG sites from a cancer panel array). The same genomic site-specific influence pattern and potential confounding effects with cancer were observed. The overlapping rate of identified sex affected genes between saliva and blood cell is 81% for X chromosome, and 8% for autosomes. Therefore, correction for sex is necessary. We propose a simple correction method based on independent component analysis, which is a data driven method and accommodates sample differences. Comparison before and after the correction suggests that the method is able to effectively remove the potentially confounding effects of sex, and leave other phenotypes untouched. As such, our method is able to disentangle the sex influence on a genome wide level, and paves the way to achieve more accurate association analyses in genome wide methylation studies
    corecore