33 research outputs found

    Characterisation of the Nematode Community of a Low-Activity Cold Seep in the Recently Ice-Shelf Free Larsen B Area, Eastern Antarctic Peninsula

    Get PDF
    Background: Recent climate-induced ice-shelf disintegration in the Larsen A (1995) and B (2002) areas along the Eastern Antarctic Peninsula formed a unique opportunity to assess sub-ice-shelf benthic community structure and led to the discovery of unexplored habitats, including a low-activity methane seep beneath the former Larsen B ice shelf. Since both limited particle sedimentation under previously permanent ice coverage and reduced cold-seep activity are likely toinfluence benthic meiofauna communities, we characterised the nematode assemblage of this low-activity cold seep and compared it with other, now seasonally ice-free, Larsen A and B stations and other Antarctic shelf areas (Weddell Sea and Drake Passage), as well as cold-seep ecosystems world-wide.Principal Findings: The nematode community at the Larsen B seep site differed significantly from other Antarctic sites in terms of dominant genera, diversity and abundance. Densities in the seep samples were high (.2000 individuals per 10 cm2) and showed below-surface maxima at a sediment depth of 2–3 cm in three out of four replicates. All samples were dominated by one species of the family Monhysteridae, which was identified as a Halomonhystera species that comprised between 80 and 86% of the total community. The combination of high densities, deeper density maxima and dominance of one species is shared by many cold-seep ecosystems world-wide and suggested a possible dependence upon a chemosynthetic food source. Yet stable 13C isotopic signals (ranging between 221.9760.86% and 224.8561.89%) were indicative of a phytoplankton-derived food source.Conclusion: The recent ice-shelf collapse and enhanced food input from surface phytoplankton blooms were responsible for the shift from oligotrophic pre-collapse conditions to a phytodetritus-based community with high densities and low diversity. The parthenogenetic reproduction of the highly dominant Halomonhystera species is rather unusual for marine nematodes and may be responsible for the successful colonisation by this single species

    Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review

    Get PDF
    Background: Here, insight is provided into the present knowledge on free-living nematodes associated with chemosynthetic environments in the deep sea. It was investigated if the same trends of high standing stock, low diversity, and the dominance of a specialized fauna, as observed for macro-invertebrates, are also present in the nematodes in both vents and seeps. Methodology: This review is based on existing literature, in combination with integrated analysis of datasets, obtained through the Census of Marine Life program on Biogeography of Deep-Water Chemosynthetic Ecosystems (ChEss). Findings: Nematodes are often thriving in the sulphidic sediments of deep cold seeps, with standing stock values ocassionaly exceeding largely the numbers at background sites. Vents seem not characterized by elevated densities. Both chemosynthetic driven ecosystems are showing low nematode diversity, and high dominance of single species. Genera richness seems inversely correlated to vent and seep fluid emissions, associated with distinct habitat types. Deep-sea cold seeps and hydrothermal vents are, however, highly dissimilar in terms of community composition and dominant taxa. There is no unique affinity of particular nematode taxa with seeps or vents. Conclusions: It seems that shallow water relatives, rather than typical deep-sea taxa, have successfully colonized the reduced sediments of seeps at large water depth. For vents, the taxonomic similarity with adjacent regular sediments is much higher, supporting rather the importance of local adaptation, than that of long distance distribution. Likely the ephemeral nature of vents, its long distance offshore and the absence of pelagic transport mechanisms, have prevented so far the establishment of a successful and typical vent nematode fauna. Some future perspectives in meiofauna research are provided in order to get a more integrated picture of vent and seep biological processes, including all components of the marine ecosystem

    Diversity of Meiofauna from the 9°50′N East Pacific Rise across a Gradient of Hydrothermal Fluid Emissions

    Get PDF
    Background: We studied the meiofauna community at deep-sea hydrothermal vents along a gradient of vent fluid emissions in the axial summit trought (AST) of the East Pacific Rise 9 degrees 50'N region. The gradient ranged from extreme high temperatures, high sulfide concentrations, and low pH at sulfide chimneys to ambient deep-sea water conditions on bare basalt. We explore meiofauna diversity and abundance, and discuss its possible underlying ecological and evolutionary processes. Methodology/Principal Findings: After sampling in five physico-chemically different habitats, the meiofauna was sorted, counted and classified. Abundances were low at all sites. A total of 52 species were identified at vent habitats. The vent community was dominated by hard substrate generalists that also lived on bare basalt at ambient deep-sea temperature in the axial summit trough (AST generalists). Some vent species were restricted to a specific vent habitat (vent specialists), but others occurred over a wide range of physico-chemical conditions (vent generalists). Additionally, 35 species were only found on cold bare basalt (basalt specialists). At vent sites, species richness and diversity clearly increased with decreasing influence of vent fluid emissions from extreme flow sulfide chimney (no fauna), high flow pompei worm (S: 4-7, H-loge': 0.11-0.45), vigorous flow tubeworm (S: 8-23; H-loge': 0.44-2.00) to low flow mussel habitats (S: 28-31; H-loge': 2.34-2.60). Conclusions/Significance: Our data suggest that with increasing temperature and toxic hydrogen sulfide concentrations and increasing amplitude of variation of these factors, fewer species are able to cope with these extreme conditions. This results in less diverse communities in more extreme habitats. The finding of many species being present at sites with and without vent fluid emissions points to a non endemic deep-sea hydrothermal vent meiofaunal community. This is in contrast to a mostly endemic macrofauna but similar to what is known for meiofauna from shallow-water vents

    Record of anthropogenic impact on the Western Irish Sea mud belt

    Get PDF
    Six cores, geophysical data (multibeam bathymetry), surface grab samples and video photography were collected from the area of the Western Irish Sea Mud Belt (WISMB). These data were analysed to determine the radionuclide input from the Sellafield nuclear facility on the eastern (UK) seaboard of the Irish Sea, and subsequently to assess the influence of bottom trawling and bioturbation on the surface and near-surface sediments. Results show significant changes in the sedimentation and geochemical regime in the WISMB due to anthropogenic causes (bottom trawling and radionuclides derived from the power plant). These changes are consistent with the concept of the Anthropocene time period. Levels of anthropogenic radionuclides measured in two of the cores enabled construction of a chronology correlated with recorded values of discharge from the Sellafield facility. Excess 210Pb and the anthropogenic radionuclide 137Cs proved useful as stratigraphic marker tools. These radionuclide data also enabled quantification of the effects of trawling, which was visible on acoustic seabed maps. Bottom trawling has removed an estimated 20–50 cm of the upper seabed

    Interdisciplinary science to support North Sea marine management: lessons learned and future demands

    No full text
    (IF 2.39; Q1)International audienceThe expected increase of maritime activities in the North Sea and the growing awareness of its natural environmental value require enhanced science-based environmental advice for more efficient and effective marine management. The North Sea Open Science Conference organised by the Royal Belgian Institute of Natural Sciences and the Belgian Biodiversity Platform in 2016 aimed to take stock of the present-day scientific knowledge on the North Sea ecosystem, its interactions with human activities and its management. The conference was structured along three themes: (1) ‘the scientific backbone of the North Sea ecosystem: adequacy of the knowledge base?’, (2) ‘A new era in environmental monitoring and assessment: what is at stake?’, and (3) ‘Sustainability: one for all, all for one?’. Focusing on ‘open science’, we welcomed about 200 participants from around the North Sea with different backgrounds and interests in environmental sciences. The participants were challenged to reflect on current and future challenges for the North Sea management and, in particular, to explore possible nature-friendly solutions for addressing these challenges during a series of introductory oral (69) and poster (59) presentations, and World Café and Fish Bowl participatory sessions. The participants agreed on six main actions to (1) provide a solid scientific base for marine management decisions; (2) develop society-driven research; (3) increase interdisciplinary science; (4) recognise the need for system knowledge; (5) improve communication, knowledge exchange, and collective implementation of scientific knowledge; and (6) build integrated knowledge bases. For each of these, concrete action points were identified, and this review gives the most important and relevant ones for creating the knowledge base and managerial framework for a sustainable North Sea
    corecore