42 research outputs found

    Quantum jumps on Anderson attractors

    Get PDF
    In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence, that is believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers. In diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and introduces a new timescale for jumps with non-monotonous probability distribution. Hermitian dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal diffusion are recovered.Comment: 6 pages, 5 figure

    Subdiffusion of nonlinear waves in quasiperiodic potentials

    Get PDF
    We study the spatio-temporal evolution of wave packets in one-dimensional quasiperiodic lattices which localize linear waves. Nonlinearity (related to two-body interactions) has destructive effect on localization, as recently observed for interacting atomic condensates [Phys. Rev. Lett. 106, 230403 (2011)]. We extend the analysis of the characteristics of the subdiffusive dynamics to large temporal and spatial scales. Our results for the second moment m2m_2 consistently reveal an asymptotic m2∼t1/3m_2 \sim t^{1/3} and intermediate m2∼t1/2m_2 \sim t^{1/2} laws. At variance to purely random systems [Europhys. Lett. 91, 30001 (2010)] the fractal gap structure of the linear wave spectrum strongly favors intermediate self-trapping events. Our findings give a new dimension to the theory of wave packet spreading in localizing environments

    Anderson localization or nonlinear waves? A matter of probability

    Full text link
    In linear disordered systems Anderson localization makes any wave packet stay localized for all times. Its fate in nonlinear disordered systems is under intense theoretical debate and experimental study. We resolve this dispute showing that at any small but finite nonlinearity (energy) value there is a finite probability for Anderson localization to break up and propagating nonlinear waves to take over. It increases with nonlinearity (energy) and reaches unity at a certain threshold, determined by the initial wave packet size. Moreover, the spreading probability stays finite also in the limit of infinite packet size at fixed total energy. These results are generalized to higher dimensions as well.Comment: 4 pages, 3 figure

    Localization in periodically modulated speckle potentials

    Full text link
    Disorder in a 1D quantum lattice induces Anderson localization of the eigenstates and drastically alters transport properties of the lattice. In the original Anderson model, the addition of a periodic driving increases, in a certain range of the driving's frequency and amplitude, localization length of the appearing Floquet eigenstates. We go beyond the uncorrelated disorder case and address the experimentally relevant situation when spatial correlations are present in the lattice potential. Their presence induces the creation of an effective mobility edge in the energy spectrum of the system. We find that a slow driving leads to resonant hybridization of the Floquet states, by increasing both the participation numbers and effective widths of the states in the strongly localized band and decreasing values of these characteristics for the states in the quasi-extended band. Strong driving homogenizes the bands, so that the Floquet states loose compactness and tend to be spatially smeared. In the basis of the stationary Hamiltonian, these states retain localization in terms of participation number but become de-localized and spectrum-wide in term of their effective widths. Signatures of thermalization are also observed.Comment: 6 pages, 3 figure

    Localization in open quantum systems

    Full text link
    In an isolated single-particle quantum system a spatial disorder can induce Anderson localization. Being a result of interference, this phenomenon is expected to be fragile in the face of dissipation. Here we show that dissipation can drive a disordered system into a steady state with tunable localization properties. This can be achieved with a set of identical dissipative operators, each one acting non-trivially only on a pair of neighboring sites. Operators are parametrized by a uniform phase, which controls selection of Anderson modes contributing to the state. On the microscopic level, quantum trajectories of a system in a localized steady regime exhibit intermittent dynamics consisting of long-time sticking events near selected modes interrupted by jumps between them.Comment: 5 pages, 5 figure

    Control of a single-particle localization in open quantum systems

    Full text link
    We investigate the possibility to control localization properties of the asymptotic state of an open quantum system with a tunable synthetic dissipation. The control mechanism relies on the matching between properties of dissipative operators, acting on neighboring sites and specified by a single control parameter, and the spatial phase structure of eigenstates of the system Hamiltonian. As a result, the latter coincide (or near coincide) with the dark states of the operators. In a disorder-free Hamiltonian with a flat band, one can either obtain a localized asymptotic state or populate whole flat and/or dispersive bands, depending on the value of the control parameter. In a disordered Anderson system, the asymptotic state can be localized anywhere in the spectrum of the Hamiltonian. The dissipative control is robust with respect to an additional local dephasing.Comment: 6 pages, 5 figure

    The crossover from strong to weak chaos for nonlinear waves in disordered systems

    Full text link
    We observe a crossover from strong to weak chaos in the spatiotemporal evolution of multiple site excitations within disordered chains with cubic nonlinearity. Recent studies have shown that Anderson localization is destroyed, and the wave packet spreading is characterized by an asymptotic divergence of the second moment m2m_2 in time (as t1/3t^{1/3}), due to weak chaos. In the present paper, we observe the existence of a qualitatively new dynamical regime of strong chaos, in which the second moment spreads even faster (as t1/2t^{1/2}), with a crossover to the asymptotic law of weak chaos at larger times. We analyze the pecularities of these spreading regimes and perform extensive numerical simulations over large times with ensemble averaging. A technique of local derivatives on logarithmic scales is developed in order to quantitatively visualize the slow crossover processes.Comment: 5 pages, 3 figures. Submitted Europhysics Letter
    corecore