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In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and
halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence that is
believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian
dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive
and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers.
In a diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint
of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and
introduces the second timescale for jumps, resulting in non-nonmonotonous probability distribution. Hermitian
dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal
diffusion are recovered.

DOI: 10.1103/PhysRevB.97.020301

Introduction. Anderson localization was introduced for a
closed disordered quantum system [1], and most of the theoret-
ical studies [2–4], as well as experimental observations, [5–8]
remained in this realm. Although already Anderson pointed
it out that a contact to some thermal reservoir “will actually
control the transport processes” [1], the interest to the issue has
been quite limited: Intuition suggests that decoherence caused
by interaction with the environment [9] will undermine de-
structive interference mechanism of localization. Indeed, early
studies confirmed that dephasing due to dissipation or measure-
ment destroys Anderson localization [10–12] (or dynamical
localization [13]) and gives way to diffusion; even local mea-
surement proved sufficient for complete delocalization [10].

Recent results, however, elucidate a much richer physics
than expected. First, it was demonstrated that even when the
asymptotic state is a trivial uniform distribution, the relaxation
process manifests heterogeneous dynamics and signatures of
metastability [14]; moreover, dissipation can even stabilize
metastable states [15–17]. Second, it was shown that a one-
dimensional quantum system with a Hamiltonian exhibiting
Anderson localization can be driven into a steady state, an
“Anderson attractor,” which retains localization properties
[18]. Such an asymptotic state can be engineered with a
set of local dissipative operators [19–22]; the corresponding
mechanism is based on the robust spatial phase structure of
Anderson modes [23].

In this Rapid Communication we revisit the Anderson’s
proposition and investigate the dynamics of a quantum particle
on an open disordered lattice in the asymptotic regime with
footprints of localization. Single trajectories are resolved with
the quantum Monte-Carlo wave function (quantum jump)
method [24–26]. We demonstrate that they are shaped by the
competition of (i) diffusion, built of sticking and intermittent
jumps between localization centers, and (ii) ballistic propaga-

tion inherited from the dark states of the disorder-free system.
Controlling the phase properties of local dissipators allows for
switching between diffusive and ballistic regimes, and varying
the direction and speed of the latter. Statistics of quantum jumps
is non-Poissonian, reflecting an interplay between disorder
and dissipation. In case of dephasing dissipation, localization
features vanish, and Poissonian jump statistics along with
normal diffusion are restored.

Model. The open Anderson system is described by the
Lindblad master equation [9,27],

�̇ = L(�) = −i[H,�] + D(�). (1)

The first term on the r.h.s. captures the unitary evolution of the
system governed by a single-particle Anderson Hamiltonian
H :

H =
∑

j

εj b
†
j bj − (b†j bj+1 + b

†
j+1bj ), (2)

where εj ∈ [−W/2,W/2] are random uncorrelated on-site en-
ergies, W is the disorder strength, bj and b

†
j are the annihilation

and creation operators of a boson on the j th site. The eigenval-
ues of the Hamiltonian are Eq ∈ [−2 − W/2,2 + W/2], while
the respective eigenstates, A

(q)
j , are exponentially localized

with length [28] ξE ≈ 24(4 − E2)/W 2. Periodic boundary
conditions are assumed, �0 = �N+1.

The term in the Lindblad equation that describes dissipation,

D(�) =
S∑

j=1

γj

[
Vj�V

†
j − 1

2
{V †

j Vj ,�}
]
, (3)

involves the set of S operators, {Vj }1,...,S , which capture action
of the environment on the system, here γj are dissipation rates.

The structure of asymptotic density matrix, which can be
defined under some conditions [27] as �∞ = limt→∞ eLt �0
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FIG. 1. Anderson attractors: probability density function (PDF) for quantum trajectories on the mass center—energy plain in the asymptotic
regime for γ = 0.1 (top), γ = 0.01 (middle), γ = 0.001 (bottom). Results for γ = 1.0 appear qualitatively similar to γ = 0.1 and are not shown
here. Non-Hermitian dissipator, Eq. (4), with phase parameters (a) α = 0, (b) α = π/4, (c) α = π/2, and (d) dephasing dissipator, Eq. (5).
Ensemble averaging is taken over Mr = 103 trajectories, which were propagated up to T = 107 after relaxation time t0 = 103γ −1. Here
W = 1,N = 200.

(for all �0) highly depends on the Hamiltonian and form of
dissipative operators. This asymptotic matrix is found as a
kernel of the Lindblad generator in Eq. (1), L(�∞) = 0.

We consider local non-Hermitian dissipators [19,20,22,29–
32]

Vj = (b†j + eiαb
†
j+1)(bj − e−iαbj+1), (4)

which produce nontrivial asymptotic states featuring local-
ization, coined “Anderson attractors” [18,23]. A physical
implementation of a Bose-Hubbard chain with neighboring
sites coupled by such dissipators was discussed in Ref. [22].
The proposed setup consists of an array of superconductive
resonators coupled by qubits; an arbitrary phase α of a pair-
wise dissipator can be controlled by the relative position
of a qubit in a cavity controlling the phase of a complex
coupling constant qj in the Jaynes-Cummings coupling term,
q∗

j b
†
j σ

−
j + qjbjσ

+
j , where qubit operator [33] σ−

j = |gj 〉〈ej |.
To realize dissipator (4) with α 	= 0 in the setup proposed
in Ref. [22], the coupling constant should vary with j as
qj = |q| exp(−iαj ).

Parameter α makes dissipators phase selective. For exam-
ple, when α = 0, the operator tries to synchronize the dynamics
on the j and j + 1 sites, by constantly recycling antisymmetric
out-of-phase mode into the symmetric in-phase one; the effect
of α = π is the opposite. More generally, a zero-disorder
eigenstate ψj = eikj /

√
N, k = 2πq/N,q = −N/2 . . . N/2 is

a dark state of the dissipators for α = k. As Anderson modes

inherit spatial phase properties from the seeding plain waves
[34], asymptotic states of the open disordered lattice are
dominated by a respective part of the Anderson spectrum,
controlled by [18,23] α.

To provide with a reference case, we also consider dephas-
ing dissipators [14,35–37]

Vj = b
†
j bj , (5)

which universally produce a trivial asymptotic density matrix
�∞ = 1/N . We also assume identical coupling to dissipation
channels, γj = γ .

Although the asymptotic density matrix, �∞, describes a
statistical distribution of single quantum trajectories, it lacks
information on their microscopic dynamics in the asymptotic
regime, and, therefore, is not sufficient for our purpose. We
employ the quantum Monte-Carlo wave function (quantum
jump) method to unravel the deterministic equation (1) into
an ensemble of quantum trajectories [24–26]. It recasts the
evolution of the model system in terms of pure states and
wave function, ψ(t), governed by an effective non-Hermitian
Hamiltonian,

H̃ = H − i

2

∑
j

V
†
j Vj , (6)

and random jumps induced by dissipators Vj . In all experi-
ments we generate up to Mr = 103 different trajectories, leave
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FIG. 2. Asymptotic density matrix diagonal elements (left-side panels) and single quantum trajectories on Anderson attractors (main
panels): non-Hermitian dissipators Eq. (4) with (a) α = 0, direct space; (b) α = 0, Anderson basis, the modes are ordered by the center of mass
coordinate; (c) α = π/4, direct space; and (d) dephasing dissipators Eq. (5), direct space. Here W = 1, γ = 0.1, and N = 200.

t0 = 103γ −1 time for relaxation towards an asymptotic state,
and follow the dynamics for up to T = 107.

We start with investigating the fine structure of asymptotic
states in dependence on the dissipation rate γ . An ensemble
of quantum trajectories yields the probability density function
(PDF) on the mass center and energy expectations plain
{n(t),ε(t)},

n(t) =
∑

k

〈ψ(t)|b†j bj |ψ(t)〉, (7)

ε(t) = 〈ψ(t)|H |ψ(t)〉, (8)

where the mass center is calculated with regard to periodic
boundaries. (Instructively, distributions of asymptotic diagonal
elements, (�n,n)∞, proved to be weakly dependent on γ .)
Figure 1 presents a typical picture for a fixed realization of
disorder. For α = 0, the trajectories bundle up about localiza-
tion centers, connected by a web of transitions; convergence
to bundles and their compactness weaken with dissipation rate
[Fig. 1(a), from top to bottom]. Nonzero α = π/4 introduces
a pronounced skew in trajectories [Fig. 1(b)]; ultimately,
localization centers get invisible for α = π/2 [Fig. 1(c)].
Note that localization in the energy persists, varying from the
lower edge of the Anderson spectrum (α = 0) to its middle
(α = π/2). In contrast, dephasing dissipation leads to a random
structure, spanned over the whole range of disorder energies
[Fig. 1(d)].

Next, we follow single quantum trajectories, ψ(t), that
evolve under Eq. (6), and compare them against the profile
of the asymptotic state, (ρn,n)∞ (Fig. 2). In the case of
α = 0, we observe an intermittent dynamics of long sticking

about localization centers and rapid transitions between them
[Fig. 2(a)]. Recasting the picture in the Anderson basis reveals
that sticking occurs at the Anderson modes, which dominate
the asymptotic state [Fig. 2(b)]. Nonzero phase parameter
of dissipator dramatically changes the dynamics: Although
sticking about localization centers is traceable, it now becomes
overlaid with ballistic propagation, see Fig. 2(c) for α = π/4.
Lastly, the dephasing dissipation leads to random jumps that
lack any spatiotemporal structure [Fig. 2(d)].

To quantify the quantum particle propagation we follow its
center of mass, n(t), calculating the ensemble averaged sec-
ond moment of displacement, m2(t) = 〈[n(t) − n(t0)]2〉, aver-
age velocity, v = 〈[n(T ) − n(t0)]/(T − t0)〉, and mean square
displacement from an average ballistic trajectory, σ 2(t) =
〈[n(t) − n(t0) − v · (t − t0)]2〉. Remarkably, evolution of the
second moment manifests different power laws, m2(t) ∝ tβ ,
with normal diffusion, β ≈ 1, for α = 0 and dephasing dissipa-
tion, and ballistic spreading, β ≈ 2, for α = π/4 and α = π/2
(Fig. 3, solid lines). At the same time, the squared standard
deviation from an average ballistic trajectory demonstrates an
accompanying diffusion, σ 2(t) ∝ tβ , β ≈ 1 (Fig. 3, symbols).
Noteworthy, the normal diffusion for α = 0 is taken over
by ballistic propagation at asymptotically large times, t ∼
106 . . . 107, which appears to be a finite size effect.

The switch from diffusive to ballistic propagation for
nonzero α can be understood as an interplay between disorder
and dissipation. As we already pointed out, dissipation selects
Anderson modes from a particular part of the spectrum, and
they borrow spatial phase properties of the zero-disorder plain
wave eigenstates, with wave numbers [23,34] k ≈ α. Over-
lapping in space (Figs. 1 and 2), the exponentially localized
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FIG. 3. Evolution of the second moment m2(t) (solid lines) and
mean square displacement σ 2(t) (symbols) for the non-Hermitian
dissipators with α = 0 (blue), α = π/4 (green); α = π/2 (red); and
dephasing dissipation (magenta). Black dash-dotted lines indicate
power laws ∝tβ . Here W = 1, γ = 0.1, N = 200.

modes interact due to dissipative coupling. It enables directed
propagation of a quantum wave packet with characteristic
velocity, sensitive to a preferred wave number.

Extensive numerical simulations reveal the dependence of
the wave packet velocity on the phase of dissipation, v(α),
Fig. 4. In the disorder-free array, W = 0, it is given by the
group velocity of plain waves, v(α) = vgroup(k)|k=α = 2 sin α,
the dark states when k = α. Disordered array manifests the
functional dependence of the sine shape, the magnitude de-
creasing for greater disorder (Fig. 4).

To get a deeper insight into statistics of single quantum
trajectories, we study probability distributions of time intervals
between the jumps, P (τ ). First, we look into the case α = 0,
where localization is most pronounced, and the trajectory
displays long-time sticking at the dominant Anderson modes
[Figs. 2(a) and 2(b)]. It turned out that such intermittency leaves
a footprint on interjump time distribution, seen as a power

-3 -2 -1 0 1 2 3
-2

-1
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1

2

FIG. 4. Velocity of the wave packet propagation in dependence
on the phase of dissipator, v(α). Averaging is taken over Mr = 103

different trajectories, propagated to T = 107. The other parameters
are γ = 0.1, N = 200.
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FIG. 5. Probability distribution of times between quantum jumps.
Non-Hermitian dissipator, Eq. (4), with α = 0 (blue), α = π/4
(green), and α = π/2 (red). Markers correspond to dissipation rate:
γ = 0.1 (circles), γ = 0.01 (squares), γ = 0.001 (triangles). Results
for γ = 1.0 appear qualitatively similar to γ = 0.1 and are not shown
here. Inset: α = 0 (blue) and dephasing dissipator (magenta), black
dashed line indicates a power-law P (τ ) ∝ τ−1, here γ = 0.1. The
other parameters are W = 1, N = 200.

law interval, P (τ ) ∼ τ−1, in a drastic difference to the Pois-
son statistics for dephasing dissipation, P (τ ) ∼ e−τ (Fig. 5,
inset).

Additional features arise in dependence on α (Fig. 5, main
part). For α = 0, when propagation is diffusive, the distribution
scales with the dissipation rate γ such that P (γ τ ) remains
almost the same. This is quite natural as the only temporal scale
is given by γ -dependent quantum jumps between different
Anderson modes. The picture changes for nonzero α with the
onset of ballistic spreading. While for moderate dissipation
rate, γ = 0.1, the distributions for α = π/4 and α = π/2
are not much different from the previous, weak dissipation,
γ = 0.01,0.001, gives a pronounced maximum. Arguably, this
is a signature of the second timescale, a characteristic passage
time of a wave packet across an Anderson mode with an
average propagation speed, as determined by the phase α and
disorder strength W (Fig. 4). It limits sticking time at Anderson
modes from above, more substantially for smaller γ , when the
other timescale increases.

Conclusions. A quantum particle in an open Anderson
system can manifest a complex behavior determined by the
interplay between disorder and dissipation. For a class of
experimentally feasible non-Hermitian dissipators with an
adjustable phase property the asymptotic states—Anderson
attractors—are built of Anderson modes from a narrow
part of the spectrum. Single trajectories, resolved with the
quantum Monte-Carlo wave function (quantum jump) method,
participate in (i) normal diffusion with sticking and intermittent
jumps between localization centers, overlaid with (ii) ballistic
propagation, dictated by the dark states of the disorder-free sys-
tem. Controlling the phase parameter of local dissipators, one
obtains diffusive or ballistic propagation, the latter reproducing
dispersion of an ordered lattice to some extent. In a diffusive
regime, statistics of quantum jumps is non-Poissonian and
has a power-law interval, a footprint of intermittent locking in
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Anderson modes. Ballistic propagation introduces the second
timescale for jumps and limits sticking times, resulting in
the nonmonotonous probability distribution of times between
jumps.

Our findings are relevant to a broad range of localizing
systems, where nontrivial asymptotic states might be possible
for certain classes of dissipation, like quasiperiodic (Aubry-

Andre) potentials [6] and systems with many-body localization
[35–37]. Dissipative effects in the presence of interactions that
yield subdiffusion [38–40] or ballistic spreading [41,42] in a
few particle case, is yet another intriguing venue for future
investigation.
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P. Zoller, and S. Diehl, New. J. Phys. 15, 085001 (2013).

[30] J. T. Barreiro, P. Schindler, O. Gühne, T. Monz, M. Chwalla, C.
F. Roos, M. Hennrich, and R. Blatt, Nat. Phys. 6, 943 (2010).

[31] D. Kienzler, H.-Y. Lo, B. Keitch, L. de Clercq, F. Leupold, F.
Lindenfelser, M. Marinelli, V. Negnevitsky, and J. P. Home,
Science 347, 53 (2015).

[32] D. Vorberg, W. Wustmann, R. Ketzmerick, and A. Eckardt,
Phys. Rev. Lett. 111, 240405 (2013).

[33] P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed.
(Springer, Berlin, 2007).

[34] K. Ishii, Prog. Theor. Phys. Suppl. 53, 77 (1973).
[35] M. H. Fischer, M. Maksymenko, and E. Altman, Phys. Rev. Lett.

116, 160401 (2016).
[36] E. Levi, M. Heyl, I. Lesanovsky, and J. P. Garrahan, Phys. Rev.

Lett. 116, 237203 (2016).
[37] B. Everest, I. Lesanovsky, and J. P. Garrahan, and E. Levi,

Phys. Rev. B 95, 024310 (2017).
[38] M. V. Ivanchenko, T. V. Laptyeva, and S. Flach, Phys. Rev. B

89, 060301(R) (2014).
[39] K. M. Frahm, Eur. Phys. J. B 89, 115 (2016).
[40] I. I. Yusipov, T. V. Laptyeva, A. Y. Pirova, I. B. Meyerov, S.

Flach, and M. V. Ivanchenko, Eur. Phys. J. B 90, 66 (2017).
[41] S. Flach, M. Ivanchenko, and R. Khomeriki, Europhys. Lett. 98,

66002 (2012).
[42] K. M. Frahm and D. L. Shepelyansky, Eur. Phys. J. B 88, 337

(2015); 89, 8 (2016).

020301-5

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1126/science.1209019
https://doi.org/10.1126/science.1209019
https://doi.org/10.1126/science.1209019
https://doi.org/10.1126/science.1209019
https://doi.org/10.1038/nphys2256
https://doi.org/10.1038/nphys2256
https://doi.org/10.1038/nphys2256
https://doi.org/10.1038/nphys2256
https://doi.org/10.1103/PhysRevLett.85.812
https://doi.org/10.1103/PhysRevLett.85.812
https://doi.org/10.1103/PhysRevLett.85.812
https://doi.org/10.1103/PhysRevLett.85.812
https://doi.org/10.1103/PhysRevA.86.043610
https://doi.org/10.1103/PhysRevA.86.043610
https://doi.org/10.1103/PhysRevA.86.043610
https://doi.org/10.1103/PhysRevA.86.043610
https://doi.org/10.1103/PhysRevB.60.30
https://doi.org/10.1103/PhysRevB.60.30
https://doi.org/10.1103/PhysRevB.60.30
https://doi.org/10.1103/PhysRevB.60.30
https://doi.org/10.1209/0295-5075/11/7/002
https://doi.org/10.1209/0295-5075/11/7/002
https://doi.org/10.1209/0295-5075/11/7/002
https://doi.org/10.1209/0295-5075/11/7/002
https://doi.org/10.1103/PhysRevA.42.4647
https://doi.org/10.1103/PhysRevA.42.4647
https://doi.org/10.1103/PhysRevA.42.4647
https://doi.org/10.1103/PhysRevA.42.4647
https://doi.org/10.1103/PhysRevE.89.042129
https://doi.org/10.1103/PhysRevE.89.042129
https://doi.org/10.1103/PhysRevE.89.042129
https://doi.org/10.1103/PhysRevE.89.042129
https://doi.org/10.1103/PhysRevB.91.235412
https://doi.org/10.1103/PhysRevB.91.235412
https://doi.org/10.1103/PhysRevB.91.235412
https://doi.org/10.1103/PhysRevB.91.235412
https://doi.org/10.1016/j.chaos.2015.07.023
https://doi.org/10.1016/j.chaos.2015.07.023
https://doi.org/10.1016/j.chaos.2015.07.023
https://doi.org/10.1016/j.chaos.2015.07.023
https://doi.org/10.3390/e19010020
https://doi.org/10.3390/e19010020
https://doi.org/10.3390/e19010020
https://doi.org/10.3390/e19010020
https://doi.org/10.1103/PhysRevLett.118.070402
https://doi.org/10.1103/PhysRevLett.118.070402
https://doi.org/10.1103/PhysRevLett.118.070402
https://doi.org/10.1103/PhysRevLett.118.070402
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1073
https://doi.org/10.1038/nphys1073
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1088/1367-2630/14/5/055005
https://doi.org/10.1088/1367-2630/14/5/055005
https://doi.org/10.1088/1367-2630/14/5/055005
https://doi.org/10.1088/1367-2630/14/5/055005
https://doi.org/10.1209/0295-5075/119/56001
https://doi.org/10.1209/0295-5075/119/56001
https://doi.org/10.1209/0295-5075/119/56001
https://doi.org/10.1209/0295-5075/119/56001
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1103/PhysRevA.46.4382
https://doi.org/10.1103/PhysRevA.46.4382
https://doi.org/10.1103/PhysRevA.46.4382
https://doi.org/10.1103/PhysRevA.46.4382
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1088/1367-2630/15/8/085001
https://doi.org/10.1088/1367-2630/15/8/085001
https://doi.org/10.1088/1367-2630/15/8/085001
https://doi.org/10.1088/1367-2630/15/8/085001
https://doi.org/10.1038/nphys1781
https://doi.org/10.1038/nphys1781
https://doi.org/10.1038/nphys1781
https://doi.org/10.1038/nphys1781
https://doi.org/10.1126/science.1261033
https://doi.org/10.1126/science.1261033
https://doi.org/10.1126/science.1261033
https://doi.org/10.1126/science.1261033
https://doi.org/10.1103/PhysRevLett.111.240405
https://doi.org/10.1103/PhysRevLett.111.240405
https://doi.org/10.1103/PhysRevLett.111.240405
https://doi.org/10.1103/PhysRevLett.111.240405
https://doi.org/10.1143/PTPS.53.77
https://doi.org/10.1143/PTPS.53.77
https://doi.org/10.1143/PTPS.53.77
https://doi.org/10.1143/PTPS.53.77
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevB.95.024310
https://doi.org/10.1103/PhysRevB.95.024310
https://doi.org/10.1103/PhysRevB.95.024310
https://doi.org/10.1103/PhysRevB.95.024310
https://doi.org/10.1103/PhysRevB.89.060301
https://doi.org/10.1103/PhysRevB.89.060301
https://doi.org/10.1103/PhysRevB.89.060301
https://doi.org/10.1103/PhysRevB.89.060301
https://doi.org/10.1140/epjb/e2016-70114-7
https://doi.org/10.1140/epjb/e2016-70114-7
https://doi.org/10.1140/epjb/e2016-70114-7
https://doi.org/10.1140/epjb/e2016-70114-7
https://doi.org/10.1140/epjb/e2017-70722-7
https://doi.org/10.1140/epjb/e2017-70722-7
https://doi.org/10.1140/epjb/e2017-70722-7
https://doi.org/10.1140/epjb/e2017-70722-7
https://doi.org/10.1209/0295-5075/98/66002
https://doi.org/10.1209/0295-5075/98/66002
https://doi.org/10.1209/0295-5075/98/66002
https://doi.org/10.1209/0295-5075/98/66002
https://doi.org/10.1140/epjb/e2015-60733-9
https://doi.org/10.1140/epjb/e2015-60733-9
https://doi.org/10.1140/epjb/e2015-60733-9
https://doi.org/10.1140/epjb/e2015-60733-9
https://doi.org/10.1140/epjb/e2015-60787-7
https://doi.org/10.1140/epjb/e2015-60787-7
https://doi.org/10.1140/epjb/e2015-60787-7



