404 research outputs found

    Synchronisation Induced by Repulsive Interactions in a System of van der Pol Oscillators

    Get PDF
    We consider a system of identical van der Pol oscillators, globally coupled through their velocities, and study how the presence of competitive interactions affects its synchronisation properties. We will address the question from two points of view. Firstly, we will investigate the role of competitive interactions on the synchronisation among identical oscillators. Then, we will show that the presence of an intermediate fraction of repulsive links results in the appearance of macroscopic oscillations at that signal's rhythm, in regions where the individual oscillator is unable to synchronise with a weak external signal

    Divide and conquer: resonance induced by competitive interactions

    Get PDF
    We study an Ising model in a network with disorder induced by the presence of both attractive and repulsive links. This system is subjected to a subthreshold signal, and the goal is to see how the response is enhanced for a given fraction of repulsive links. This can model a network of spin-like neurons with excitatory and inhibitory couplings. By means of numerical simulations and analytical calculations we find that there is an optimal probability, such that the coherent response is maximal

    Noisy continuous--opinion dynamics

    Get PDF
    We study the Deffuant et al. model for continuous--opinion dynamics under the influence of noise. In the original version of this model, individuals meet in random pairwise encounters after which they compromise or not depending of a confidence parameter. Free will is introduced in the form of noisy perturbations: individuals are given the opportunity to change their opinion, with a given probability, to a randomly selected opinion inside the whole opinion space. We derive the master equation of this process. One of the main effects of noise is to induce an order-disorder transition. In the disordered state the opinion distribution tends to be uniform, while for the ordered state a set of well defined opinion groups are formed, although with some opinion spread inside them. Using a linear stability analysis we can derive approximate conditions for the transition between opinion groups and the disordered state. The master equation analysis is compared with direct Monte-Carlo simulations. We find that the master equation and the Monte-Carlo simulations do not always agree due to finite-size induced fluctuations that we analyze in some detail

    Divergent Time Scale in Axelrod Model Dynamics

    Get PDF
    We study the evolution of the Axelrod model for cultural diversity. We consider a simple version of the model in which each individual is characterized by two features, each of which can assume q possibilities. Within a mean-field description, we find a transition at a critical value q_c between an active state of diversity and a frozen state. For q just below q_c, the density of active links between interaction partners is non-monotonic in time and the asymptotic approach to the steady state is controlled by a time scale that diverges as (q-q_c)^{-1/2}.Comment: 4 pages, 5 figures, 2-column revtex4 forma

    Two species coagulation approach to consensus by group level interactions

    Get PDF
    We explore the self-organization dynamics of a set of entities by considering the interactions that affect the different subgroups conforming the whole. To this end, we employ the widespread example of coagulation kinetics, and characterize which interaction types lead to consensus formation and which do not, as well as the corresponding different macroscopic patterns. The crucial technical point is extending the usual one species coagulation dynamics to the two species one. This is achieved by means of introducing explicitly solvable kernels which have a clear physical meaning. The corresponding solutions are calculated in the long time limit, in which consensus may or may not be reached. The lack of consensus is characterized by means of scaling limits of the solutions. The possible applications of our results to some topics in which consensus reaching is fundamental, like collective animal motion and opinion spreading dynamics, are also outlined

    Phase Separation Driven by External Fluctuations

    Get PDF
    The influence of external fluctuations in phase separation processes is analysed. These fluctuations arise from random variations of an external control parameter. A linear stability analysis of the homogeneous state shows that phase separation dynamics can be induced by external noise. The spatial structure of the noise is found to have a relevant role in this phenomenon. Numerical simulations confirm these results. A comparison with order-disorder noise induced phase transitions is also made.Comment: 4 pages, 4 Postscript figures included in text. LaTeX (with Revtex macros

    Resonance induced by repulsive interactions in a model of globally-coupled bistable systems

    Get PDF
    We show the existence of a competition-induced resonance effect for a generic globally coupled bistable system. In particular, we demonstrate that the response of the macroscopic variable to an external signal is optimal for a particular proportion of repulsive links. Furthermore, we show that a resonance also occurs for other system parameters, like the coupling strength and the number of elements. We relate this resonance to the appearance of a multistable region, and we predict the location of the resonance peaks, by a simple spectral analysis of the Laplacian matrix

    Role of social environment and social clustering in spread of opinions in co-evolving networks

    Get PDF
    Taking a pragmatic approach to the processes involved in the phenomena of collective opinion formation, we investigate two specific modifications to the co-evolving network voter model of opinion formation, studied by Holme and Newman [1]. First, we replace the rewiring probability parameter by a distribution of probability of accepting or rejecting opinions between individuals, accounting for the asymmetric influences in relationships among individuals in a social group. Second, we modify the rewiring step by a path-length-based preference for rewiring that reinforces local clustering. We have investigated the influences of these modifications on the outcomes of the simulations of this model. We found that varying the shape of the distribution of probability of accepting or rejecting opinions can lead to the emergence of two qualitatively distinct final states, one having several isolated connected components each in internal consensus leading to the existence of diverse set of opinions and the other having one single dominant connected component with each node within it having the same opinion. Furthermore, and more importantly, we found that the initial clustering in network can also induce similar transitions. Our investigation also brings forward that these transitions are governed by a weak and complex dependence on system size. We found that the networks in the final states of the model have rich structural properties including the small world property for some parameter regimes. [1] P. Holme and M. Newman, Phys. Rev. E 74, 056108 (2006)

    Gate bias characterization of CNT-TFT DNA sensors

    Get PDF
    [No abstract available
    • …
    corecore