76 research outputs found

    Bifurcations in unsteady aerodynamics-implications for testing

    Get PDF
    The various forms of bifurcations that can occur between steady and unsteady aerodynamic flows are reviewed. Examples are provided to illustrate the various ways in which bifurcations may intervene to influence the outcome of dynamics tests involving unsteady aerodynamics. The presence of bifurcation phenomena in such tests must be taken into consideration to ensure the proper interpretation of results, and some recommendations are made to that end

    Nonlinear problems in flight dynamics

    Get PDF
    A comprehensive framework is proposed for the description and analysis of nonlinear problems in flight dynamics. Emphasis is placed on the aerodynamic component as the major source of nonlinearities in the flight dynamic system. Four aerodynamic flows are examined to illustrate the richness and regularity of the flow structures and the nature of the flow structures and the nature of the resulting nonlinear aerodynamic forces and moments. A framework to facilitate the study of the aerodynamic system is proposed having parallel observational and mathematical components. The observational component, structure is described in the language of topology. Changes in flow structure are described via bifurcation theory. Chaos or turbulence is related to the analogous chaotic behavior of nonlinear dynamical systems characterized by the existence of strange attractors having fractal dimensionality. Scales of the flow are considered in the light of ideas from group theory. Several one and two degree of freedom dynamical systems with various mathematical models of the nonlinear aerodynamic forces and moments are examined to illustrate the resulting types of dynamical behavior. The mathematical ideas that proved useful in the description of fluid flows are shown to be similarly useful in the description of flight dynamic behavior

    Nonlinear problems in flight dynamics involving aerodynamic bifurcations

    Get PDF
    Aerodynamic bifurcation is defined as the replacement of an unstable equilibrium flow by a new stable equilibrium flow at a critical value of a parameter. A mathematical model of the aerodynamic contribution to the aircraft's equations of motion is amended to accommodate aerodynamic bifurcations. Important bifurcations such as, the onset of large-scale vortex-shedding are defined. The amended mathematical model is capable of incorporating various forms of aerodynamic responses, including those associated with dynamic stall of airfoils

    Observations, theoretical ideas and modeling of turbulent flows: Past, present and future

    Get PDF
    Turbulence was analyzed in a historical context featuring the interactions between observations, theoretical ideas, and modeling within three successive movements. These are identified as predominantly statistical, structural and deterministic. The statistical movement is criticized for its failure to deal with the structural elements observed in turbulent flows. The structural movement is criticized for its failure to embody observed structural elements within a formal theory. The deterministic movement is described as having the potential of overcoming these deficiencies by allowing structural elements to exhibit chaotic behavior that is nevertheless embodied within a theory. Four major ideas of this movement are described: bifurcation theory, strange attractors, fractals, and the renormalization group. A framework for the future study of turbulent flows is proposed, based on the premises of the deterministic movement

    Modeling aerodynamic discontinuities and the onset of chaos in flight dynamical systems

    Get PDF
    Various representations of the aerodynamic contribution to the aircraft's equation of motion are shown to be compatible within the common assumption of their Frechet differentiability. Three forms of invalidating Frechet differentiality are identified, and the mathematical model is amended to accommodate their occurrence. Some of the ways in which chaotic behavior may emerge are discussed, first at the level of the aerodynamic contribution to the equation of motion, and then at the level of the equations of motion themselves

    Mathematical modeling of the aerodynamic characteristics in flight dynamics

    Get PDF
    Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated

    Nanofibrous solid dosage form of living bacteria prepared by electrospinning

    Get PDF
    The aim of this work was to investigate the suitability of electrospinning for biodrug delivery and to develop an electrospinning-based method to produce vaginal drug delivery systems. Lactobacillus acidophilus bacteria were encapsulated into nanofibers of three different polymers (polyvinyl alcohol and polyvinylpyrrolidone with two different molar masses). Shelf life of the bacteria could be enhanced by the exclusion of water and by preparing a solid dosage form, which is an advantageous and patient-friendly way of administration. The formulations were stored at –20, 7 and 25°C, respectively. Viability testing showed that the nanofibers can provide long term stability for huge amounts of living bacteria if they are kept at (or below) 7°C. Furthermore, all kinds of nanowebs prepared in this work dissolved instantly when they got in contact with water, thus the developed biohybrid nanowebs can provide new potential ways for curing bacterial vaginosis
    corecore