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Abstract

Various representations of the aerodynamic contribution to the aircraft's

equations of motion are shown to be compatible within the common assumption of

their Frechet differentiability. Three forms of invalidating Frechet differ-

entiability are identified, and the mathematical model is amended to accommo-

date their occurrence. Some of the ways in which chaotic behavior may emerge

are discussed, first at the level of the aerodynamic contribution to the

equations of motion, and then at the level of the equations of motion
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I. INTRODUCTION

Flight dynamics is the field of research concerned with the dynam_ca!

behavior of vehicles in flight. Studies _n this field began with Bryan's

"Stability in Aviation" [I] at the very beginning of heavier-than-air flight

itself. Reporting on progress 25 years later, B. Melville Jones [2] defined

the subject's principal task as follows:

Given the shape of the aeroplane and the properties of the air

through which it moves, the air reactions X, Y, Z, L, M, N depend

on the motion of the aeroplane relative to the air; that is to say

upon the six variables U, V, W, P, Q, R and their rates of change

with respect to time. In practice, the principal difficulty lles

in determining the relationships between X, Y, ... and U, V, ...

The establishment of these relationships with sufficient realism is what we

now recognize as the province of mathematical modeling. Forced by the contin-

ual expansion of the aircraft's performance envelope, our own studies in the

mathematical modeling of the aerodynamic characteristics in flight dynamics

have undergone a continual deepening in the effort to maintain sufficient

realism over the intervening years [3-7].

Since the 1960s, our aim has been to provide a consistent formulation and

theoretical method for studying the nonlinear aspects of problems in flight

dynamics. In recent years, we have become increasingly aware that our studies

could be enhanced by linking them to the common features of parallel studies

in allied f_e!ds. The unifying medium is the rapidly growing body of theory

underlying research in nonlinear dynamical systems. We found, first, that our

approach to modeling the aerodynamic contribution to the aircraft's equations

of motion, involving nonlinear indicial responses and generalized



superposition integrals [8], could be madecompatible with one originating in

the field of electrical circuits and systems, based on nonlinear algebraic

functional expansions [9]. The reformulation in terms of algebraic functional

expansions, which have the virtue of concreteness, clarified someof the

essential properties of the indicial response. Second, recognizing the

natural connection betweenour formulation of the indicial response and ideas

from bifurcation theory led us in turn to emphasize the central role played by

Frechet differentiability in the formulation. In [10], we proposed that a

theory for enumerating the meansof invalidating Frechet differentiability of

the response offered an alternative to bifurcation theory with potentially

greater scope, and in [11] we began such a theory with an account of the means

that we had currently identified. Finally, in [11] we recognized that a

potentially important issue emergeswhenwe try to implement the accommodation

within the mathematical model of bifurcation phenomenainvolving time-

dependentequilibrium states. Wesaw that memoryeffects becomemore impor-

tant with each successive bifurcation, implying that a chaotic equilibrium

state would require information about the complete past history of the motion

to ensure a complete specification of the indicial response.

The occasion of this conference, designed to encourage interactions

between researchers in a variety of disciplines, gives us an opportunity to

present our most recent findings in a more general setting than before.

First, we shall try to demonstrate the compatibility that exists between

various representations of the aerodynamic response, within the commonassump-

tion of their Frechet differentiability. Then, we shall enumeratewith physi-

cal examples the meansof invalidating Fr_chet differentiability that wehave

identified. This will lead to a discussion of someof the ways in which

chaotic behavior mayemerge, first at the level of the aerodynamic



contribution to the equations of motion, and then at the level of the

equations of motion themselves.

11. REPRESENTATIONSOFTHEAERODYNAMICRESPONSE

Weintend to demonstrate that various representations of the aerodynamic

force and momentresponse to arbitrary maneuversare compatible, given the

commonassumption of their Frechet differentiability. However, for clarity,

we limit attention to the response in lift coefficient CL to a maneuver

involving only a single degree of freedom, namely, an arbitrary variation of

angle of attack _ with time _.

Figure I illustrates the motion under study when it is referred to an

X,Y coordinate system that is fixed in space. The aircraft is assumedto

have started impulsively from rest in the distant past _ + -_ with fixed

axial velocity Uo and zero vertical velocity. It passes through the origin

of the X,Y coordinate system at the arbitrarily chosen initial instant

= O, maintaining the constant axial velocity Uo and simultaneously trans-

lating vertically, with vertical velocity at the center of gravity Vc(_)

being an arbitrary function of time _. The angle of attack _ is defined to

be the angle between the resultant ve!ocity vector and the aircraft's longi-
-I

tudinal axis, so that _ = tan [Vc(_)/Uo]. Weshow first how a form for the

response in CL to the arbitrary variation in _ can be constructed from a

suitable summationof lift responses to pulses in a.
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II.I. Nonlinear algebraic functional expansion.

Let the angle of attack s be zero for all time _ except at £ = 41,

where a pulse occurs of amplitude _(_I) and of infinitesimal duration _£I"

Consider the response to the pulse at _I of the lift coefficient CL at a

measuring time t subsequent to _I" The lift response at t will be a

function of the elapsed time t - _I, and the amplitude of the pulse _(_i ).

If we assumethat there will be a range of s around s = 0 in which the

dependenceof CL on s(_1 ) is analytic, then we can write the response in

CL as a Taylor-series expansion in s(_1 ) of the form

(I) ACL(t) : ACL(t - E1,s(E1))dir : _ an(t - EI)[S(EI)]nAE I
n

The first of the forms in (I) will beused to distinguish between direct

(subscriPt dir) and interference (subscript Int) effects.

Nowlet us consider the response CL at the measuring time t to a pair

of pulses located at _I and _2 with _i,_2 < t. In addition to the direct

influence of each of the pulses acting as if in isolation, the interference

between the pulses also will influence the lift. The interference effect can

be written in a form resembling a product of responses to single pulses

(2)
A2CLint,2 : _ bmn(t - {2'_2 - {1)[_(_1)]n[a({2)]ma_IA{2

where the subscript (int,2) means"interference betweena pair of pulses."

The form vanishes properly with the vanishing of either of the pulses and

retains the analytic dependenceon angle of attack. With the addition of the
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direct influence of the two pulses, the lift coefficient at time t takes the

form

(3) _CL(t) : ACL(t - _1,a(E1))dir + ACL(t - E2,_(_2))dir + A2CLint,2

The process of adding pulses can be continued indefinitely in the same way.

At the next stage, the interference between triplets of pulses must be consid-

ered as well as that between pairs. In the limit of a continuous distribution

of pulses starting in the distant past, a summation of multiple integrals is

obtained having the form*

(4) CL(t) : + + + .--
CLdi r CLint, 2 CLint, 3

with

(5)

(6)

t

CLdir : _n _-® an(t - _l)[a(_l)]n d_l

eL : [_(_2 ) d_ 2 bmn(t - _2,_2 - _I)[_(CI)1 n d_ I
int,2 _

*In [11] we verified that the form is consistent with a solution of the

Navier-Stokes equations.



(7) CLint,3 m,n,p

Cmnp(t - _3,E3 - _:2,_2 - _1)[_(_1)]P d_ 1

Equation (4) represents the lift coefficient at time t in response to an

arbitrary variation of _ over the time interval -_ < _ < t. It has essen-

tially the same form as the nonlinear algebraic functional expansion advocated

in [9] except that it can accommodate a slightly more general initial state.

The form confirms an important point made in [9). A partial summation con-

sisting of the leading term from each of (5), (6}, ... will be seen to form a

Volterra series [12]. The existence of additional terms is a confirmation

that the _ priori adoption of a Volterra series to represent the lift coeffi-

cient would not have beea sufficiently general to accommodate the Taylor

series form of the dependence on angle of attack.

II.2. An alternative functional expansion.

The following alternative form of functional expansion has proven partic-

ularly useful in application to problems in flight dynamics. There, it is

easy to Justify a simplifying approximation that is valid on the assumption of

a slowly varying motion.

In general, the lift response CL at time t is a functional [12] of

the motion history _(_) over the full time-interval -® < _ < t :



(8) CL(t) : CL[a(E) ]

If _ can be considered an analytic function of E, its history can be recon-

structed, in principle, from a knowledgeof all of the coefficients of its

Taylor-series expansion about E = t. Since _(E) is equally represented by

the coefficients of its expansion, it follows that the functional, with its

dependenceon _(E), can be replaced without approximation by a function which

dependson all of the coefficients of the expansion of _(E) at E = t :

(9) CL[_(_)] = CL(m(t),_(t),_(t) , ...)

Assumingnow that _(t) is potentially large but that the rates

a(t), _(t}, ... are all always small, we are permitted to expand (9) around

the zero values of the rates, so that

(10) CL(t) : CL[_(E)] : CL(m(t),O,O,...) + &(t)CL.(_(t),O,O,...)

+ _2(t) CL. (s(t) 0,0, ) +
. , ... ...

me

+ _(t)CLi(s(t),0,0,...) ÷ ...

÷ ,,,

This is an alternative form of functional expansion which is compatible with

(4). Compatibility can be verified if each of the terms involving [s(_i)] q

in the integral terms in (4) is expanded about the value of _i at its upper

limit. Then the integrations can be carried out yielding the form



(11) CL(t) : _ An[_(t)] _ + _(t) _ Bn[a(t)]n
n n

+ &2(t) ]_ Cn[_(t)]n +

which can be identified term by term with (I0).

The usefulness of the form of (10) becomes apparent when we invoke the

idea of a fading memory, which justifies discarding rate terms beyond the

first-order term involving &(t). The basis of the idea is physical. We

argue that the lift response CL at time t should have "forgotten" long-

past events, and so should depend mainly on events in the most recent past.

On this assumption, so far as the lift response is concerned, the form of the

past motion just prior to _ : t might just as well have existed for all

earlier times. Hence at most, only the first few terms of the expansion of

_(_) need be retained to characterize correctly the most recent past, which,

on the assumption, is all that the lift response at t remembers. Retaining

the first two coefficients of a(_), for example, implies matching the true

past history of m in magnitude and slope at _ = t, thereby approximating

a(_) by a linear functior of time _(_) = m(t) + (t - _)&(t). The idea has

been given a firm mathematical basis in an important paper by Coleman and Noll

[13]. Invoking it, we have as a representation of CL(t) for slowly varying

motions

(12) CL(t) : CL(_(t),O,O,...) + &(t)CL.(e(t),O,O,...)

The representation has played an important role in flight dynamics studies

because it allows decoupling of the mathematical modeling problem for the

aerodynamic contribution from the aircraft's equations of motion. On the

basis of (12), the aerodynamic coefficients can be evaluated once and for all

and be available without change for a range of possible motions. The notation



itself in (12) suggests the types of experiments that could be performed to

evaluate the coefficients. The first term CL(_(t),O,O,...) is the lift

coefficient that would be measuredat time t for a steady motion in which

the angle of attack had remained constant at the instantaneous value s(t) for

all time prior to t. Oneshould note, however, that nothing requires the

coefficient itself to remain constant. In fact, in a later section we shall

see that vortex-sheddlng can cause the coefficient to be a periodic function

of time. The second term CL.(s(t),O,O,...) is the rate of change with _,

evaluated at a : O, of the lift coefficient that would be measured for a

motion in which the angle of attack had varied linearly with time up to the

present instant at which its value is s(t). However, again within the

assumption that motion in the distant past has been forgotten, any of a class

of sufficiently slowly varying motions which arrive at the same value of a

at time t will yield the same value of CL_.

II.3. Indicial response and generalized superposition integral.

Finally, we shall show that our use of indicial responses to form a

general integral representation of the aerodynamic response is compatible with

the representation of the aerodynamic response based on nonlinear algebraic

functional expansions given by (4). Let us begin by using (4) to form the

indicial response according to our definition of it. To indicate the form of

the result, it will suffice to consider terms in (4) only through the series

representing CLint,2" Two motions need to be considered (of. Fig. 2). In

the first, the aircraft undergoes the motion under study _({) from time

÷ -® up to a time _ : T, where T < t. Subsequent to T, a is held

constant at e(x). Thus, in (4), (5), and (6),

I0



(13) _i(_) : a(_) ; -_ < _ <
: a(T) ; _ >_T

The direct and interference contributions to CL(t) take the form

(14)

T ;t
CLdir = n_ ___ an(t - _I)[_(_I)]n d_1 + _n [e(T)]n • an(t - _I)d_I

__T ___2 _CLint,2 : m,n_ _[s(_2)]m d_2 _ bmn(t - _2'_2 _I)[_(_I)]n d_1

t T

+ _i[s(_)]m I d_2 _- bmn(t- _2'_2- _I)[_(_I)]n d_1
m,n i

+ _[s(T)] m+n d_ 2 bmn(t - _2,_2 - _i)d_i
m,n

In functional notation [12], the lift!esponse to the same motion is

(15) CL(t) = CL[_I(_)] : CL[_(_);t,T]

where the notation in the first form should be understood to mean that CL(t)

is a functional of the variation m1(_) over the interval -_ < _ < t. The

second form is intended to make more explicit that _i(_) represents the

motion under study _(_) over the interval -® < _ < T, but is constrained to

remain constant at _(T) for • _ _ g t. Thus CL(t) is both a functional

of _(_) and a function of t and t.

In the second motion, the aircraft undergoes the same angle-of-attack

history _(_) up to time _. Subsequent to _, the angle of attack is again

held constant, but is given an incremental step change 8_ over its previous

value of m(T). Thus, in the second motion,
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(16) a2(_) : a(_) ; -_ < _ < T
: s(T) + _a ; _ _>

The direct and interference contributions to CL(t) become

CLdir = n_ "_-=an(t- {1)[s({1)]n d{1 + ]E_[s(T)+n As]n an(t- {I)d{I

_CLint,2 : ®[s({2)]m d_ 2 ® bmn(t - {2,_2 _1)[s({1)]n d{ 1

+ _[s(z) + As] m d_ 2 bmn(t - _2,_ 2 - _1)[s(_1)]n d_1
m,n =

+ + d_ 2 bmn(t - _2,_2 - _i)d_i
m,n

(17)

Again, written as a functional, the lift response to the motion s2(_) is

(18) CL(t) : CL[S2({)]

The indicial !ift response is formed by taking the difference between

(14) and (17) (or between (15) and (18)), dividing by the incremental step

As, and going to the limit as As ÷ O. Existence of the limit is ensured by

the analyticity of the functional dependence on s({). The result is

12



(19)

ACL(t) (CL[_2(_)] - CL[a1(_)] )
lira - lim

A_O A_ 8a÷O Aa

= _ n[a(T)] n-1 F t
n "T an(t - _1)d_l

+ _ m[a(T)]m-1 Z t ___d_ 2 bmn(t - _2,_2 - _1)[a(_1)]n 641
m_n

_(m n)[s(T)]m+n-1 _t _2+ + d_ 2 bmn(t - _2,_2 - _1)d_1
m,n

Equation (19) reveals the form of the indicial lift response to a step change

in angle of attack in terms of functional expansions. The first and third

terms on the right side of (i9) do not depend on the past motion, but only on

the level of the angle of attack at which the step was made. The second term

depends on the past motion since a(_p with -_ < _I < T appears within the

integral. The leading term of this past dependence has the form

t T

dE2 ___ b11(t - E2'E2 - E1)ct(E1)dE I

Dependence on the past thus arises from the interference effects between

pulses prior to _, the origin of the step, and perturbation pulses of

0(8_) originating subsequent to _. In the general case, then, the indicial

response is itself a functional.

In fact, in formal terms (see [14] for a useful account of the essen-

tials} the operations involved in forming the indicial response amount to

taking a Frechet derivative of the functional CL[S(_I) ]. To see this, we

adopt the notation of [14], letting

13



(20) h : eq

where we set

(21)

£ : AC_

, n 0 ;

I ;

so that

(22) a2(_) : al(_) + en

Then, following [14], we have

ACL(t) ICL[_I({) + en] - CL[aI({)])(23) lim - llm
Aa+O Aa ¢÷0 e

° I: _ CL[al([,) + _rl] ¢:0

= C_[_1(5)]n

The equivalence of the operations yielding (19) and (23) should be evident.

Finally, to conform with the second form in (15), we set

_cL(t)
(24) lim A_ - CL[Sl(()]n _ CL [_(5);t,t]

Aa÷O a

where the indication of a separate dependence on t and _ rather than on

elapsed time t - T alone should be noted. The first and third terms in

14



(19), which dependonly on a(_), indicate a dependenceon t - T alone as

can be easily verified; however, as a consequenceof its dependenceon the

past motion, the second term cannot be cast as a function of t - • alone.

Equation (24) can now be used to form a generalized superposition inte-

gral for the response in CL to an arbitrary angle-of-attack variation. The

result is

(25) t deCL(t) : CL [e(_);t,r] _ dr

Equivalently, to makeexplicit the dependenceon an initial state, (25) maybe

rewritten as

_ot de(26) CL(t) = CL[e(_);t,O] + CL [e(_);t,T] _ dT

Note that the first term in (26) is the lift at time t resulting from

an angle-of-attack variation e(_) which is equal to the motion history prior

to _ = O, and which is constrained at _ = T = 0 to remain constant at a(O)

for all _ _ T = O.

By substituting (19) for CL [e(_);t,T] in (25) and carrying out the
e

integration, one will verify that the form of (4) is restored through terms of

the series representing CLint,2 (i.e., through (5) and (6)). We conclude

first that an approach to modeling based on nonlinear indicial responses and

generalized superposition integrals is compatible with one based on nonlinear

algebraic functional expansions. Second, to the extent that the three repre-

sentations discussed in this section are compatible, their validity rests on

the Frechet differentiability of the lift response CL[a(_);t,T] over the
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interval -_ < E < t. In a later section, we shall take up the meansby which

Fr_chet differentiability of the lift response maybe invalidated.

III. QUALIFICATIONS

Before proceeding with the study of Frechet differentiability, we must

introduce some important qualifications. Our current understanding of the

fluld-dynamic aspects of the problem stems almost entirely from results of

studies of laminar flows governed by the incompressible Navier-Stokes equa-

tions. Within these confines, studies have been further limited to flows in

bounded domains. Boundary conditions have been simple enough to permit reduc-

tion of the linear stability problem (the necessary first step in the study of

bifurcations) to the form of ordinary differential equations (e.g., the Orr-

Sommerfeld equations). The principal findings on which our current under-

standing is based are summarized in [15-18]. Qualifications are necessary

when we attempt to extrapolate this body of knowledge to the study of fluid-

dynamic aspects under the conditions of full-scale flight. These involve

turbulent compressible flows, which, if averaging and modeling are introduced,

will be governed not by the compressible Navier-Stokes equations but by evolu-

tion equations of unknown forms. Further, the domains of the flows are typi-

cally unbounded, rather than bounded. Finally, the boundary conditions,

reflecting the geometries typical of modern aircraft, ordinarily will not

allow reduction of the linear stability problem to the level of ordinary

differential equations.

The situation requires us to stipulate a list of presuppositions which

will be the basis of the extrapolations we make. The list is inspired by one

that Lanford compiled to justify the study of turbulence within a framework

16



based on the incompressible Navier-Stokes equations [19]. Our list will

merely supplement Lanford's, taking additional account of turbulence modeling,

compressibility, and the necessity to consider flows in unbounded domains.

The issue of boundary conditions is not addressed on the assumption that their

increased complexity does no more than enlarge the role of numerical

computation.

III.1. Turbulence modeling.

Let us consider the flow field to which a typical lift response

CL[S(_);t,T] corresponds. We assume that the flow field at time _ = T is

given (to within a certain accuracy) and we must determine the subsequent flow

at time t. Inasmuch as s(_) remains constant at s(_) for all _ = t > T,

we have fixed boundary conditions. This form of the fluid-dynamics problem is

known as an initial boundary value problem (IBVP; cf. [16]). We assume that

any given realization of the IBVP is governed with sufficient accuracy by the

compressible Navier-Stokes equations. Paralleling [19], in the absence of

proof we simply postulate that a solution of the IBVP would exist for all

= t z T and would be unique. However, the Reynolds number is sufficiently

high that a solution would exhibit chaotic behavior, implying a sensitive

dependence on the initial conditions. Thus, small perturbations of the ini-

tial conditions would cause repetitions of the given motion to result in a set

of solutions having stochastic properties.

The situation calls for the application of some form of averaging of the

compressible Navler-Stokes equations to suppress the appearance of the small-

scale chaotic structures. After averaging, the repertory of solutions of the

resulting equations must remain faithful to that of the unaveraged equations,
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neither allowing uncharacteristic solution forms nor losing essential ones.

The necessity of closing the averaged equations in conformity with this

requirement introduces the turbulence modeling problem. We cannot go further

here in specifying modeling requirements except to postulate the one feature

that must be retained in common with the original Navier-Stokes equations:

Whatever the form of modeling adopted, it must remain possible to cast the

modeled equations in the form of autonomous evolution equations, namely,

(27) _t = H(_,k)

where u is the velocity vector and _ is a parameter (e.g., angle of

attack, Reynolds number, Mach number). We believe that the premise is a

reasonable one, involving no more in principle than the use of orthogonal

projections [20,21] to eliminate gradient terms (e.g., the pressure term) from

the modeled equations.

III.2. Compressibility.

We shall assume that modeled equations of turbulent flow resulting from

averaging the compressible Navier-Stokes equations remain at least as well-

behaved as the original equations and their incompressible counterparts. Of

course, the new parameters introduced by compressibility (e.g., Mach number)

will themselves have critical values corresponding to additional mechanisms by

which Frechet differentiability may be invalidated.
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III.3. Unbounded domains.

Let us return to the IBVP represented by CL[a(_);t,_] and assume that

the premises of the previous sections are now in force. Henceforth, the

equations governing the flow field are assumed to be modeled equations of

turbulent flow, of known form, and that satisfy the form of (27) by suitable

projections.

The issue concerning the absence of bounds on the flow domain arises in

evaluating the stability of the flow field in the equilibrium state. We say

that the equilibrium state is reached in the limit as t - • + ®, so that,

presumably, transient effects associated with the initial conditions have

vanished. Bifurcation of the equilibrium state is one means by which Frechet

differentiability of the lift response may be invalidated. To investigate the

possibility, a study of the stability of the equilibrium state must be under-

taken first, since bifurcation of the equilibrium state will not occur unless

a critical value of the parameter in question (here, s) exists at which the

flow field in the equilibrium state becomes unstable. Stability is evaluated

by determining whether an infinitesimal perturbation of the equilibrium flow

decays or grows with time. The perturbation's fate may be determined from a

linear spectral problem; the governing equations are obtained from a linear-

ized perturbation of the equations governing the equilibrium flow. Typically,

with a bounded domain, it can be shown that solution of the spectral problem

yields a countably infinite set of isolated eigenvalues in a complex plane.

Stability is indicated if all of the eigenvalues lie in the left half of the

plane. On the other hand, little is known about the spectrum of eigenvalues

for unbounded domains. In the case of flows in unbounded domains governed by

the incompressible Navier-Stokes equations, it is believed [22,23] that an
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incomplete set of discrete eigenvalues exists which again controls stability,

and that there is additionally a continuous spectrum having negative real part

(i.e., lying in the left half of the complex plane). We postulate that what

is believed to be the case for flows in unbounded domains governed by the

incompressible Navier-Stokes equations is in fact the case for our problem.

III.4. Bifurcation theory.

Accepting the last premise (which implies accepting all of the previous

ones) leads to several conclusions concerning the role of bifurcation theory

in the modeling of aerodynamic responses. First, since we have postulated

that stability of the equilibrium state continues to be controlled by the

discrete part of the eigenvalue spectrum alone, entailing no change from the

rules governing bounded domains, We conclude that the role of bifurcation

theory regarding the equilibrium state should carry over intact to flows in

unbounded domains. That is, all of the instability mechanisms that have been

uncovered by studies of flows in bounded domains governed by the incompressi-

ble Navier-Stokes equations should have counterparts in flows in unbounded

domains governed by modeled turbulent-flow equations. With the onset of

instability of the equilibrium state, bifurcation theory again should be

capable of classifying and characterizing the properties of the new stable

equilibrium states that can arise to replace the unstable one.

On the other hand, since bifurcation theory is concerned only with the

equilibrium state, it does not suffice to completely resolve the IBVP from

which the indicial response is derived. We note that when the eigenvalue

spectrum lies in the left half of the plane, indicating stability of the

equilibrium state, the IBVP for an infinitesimal step perturbation of the
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boundary condition _(_) = a(_); _ _ _ is a linear problem. In fact, the

transient flow field from which the indicial response CL [_(_);t,T] is

derived can be obtained from a suitable superposition of the eigensolutions

(including both the discrete and continuous parts) of the linear spectral

problem. The superposition is madedeterminate by the necessity of matching a

prescribed flow field at the initial instant _ = T. This is how the depen-

dence on the past motion is expressed, which makes CL [a(_);t,T] a nonlinear

functional even though it is derivable from linearized perturbation equa-

tions. Thus, recalling the derivation by meansof functional expansions, we

affirm that so long as stability of the equilibrium state is ensured, and so

long as there are no other meansavailable of invalidating Frechet differen-

tiability of the lift response CL[_(_);t,_] , then the differential

A_CL [_(_);t,T] can be determined from a linear problem. With the onset of

instability, however, the perturbatio% flow no longer can be obtained from the

solution of the linear spectral problem, since at least one of the discrete

eigensolutions would grow without bounds. Then, the incremental change in

lift coefficient must be determined from the fully nonlinear perturbation flow

equations.

IV. FRECHETDIFFERENTIABILITY

Referring to Figure 3, let us assumethat the angle-of-attack variation

under study s(_) passes through a critical value ac at a value of _ = _c

within the interval of interest, 0 < T < t. Wesay that _c is a critical

value in this sense: If the angle-of-attack variation _(_) were constrained

to remain constant at Sc for all T > Tc, the corresponding lift response

CL[S(_);t,T c] would begin to depart from an initially infinitesimally close
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neighboring response, such that CL[a(_);t'_cl would not be Frechet differen-

tiable. Thus, we cannot allow the integration in (26) to proceed beyond
C

without acknowledging the loss of Frechet differentiability. Let us assume

that for all other angles of attack within the range a(O) < _ < _(t), the

lift responses permit Frechet differentiation. Then we can isolate the criti-

cal state by stopping the integration in (26) Just short of Tc and starting

again just beyond Tc. Within the isolated interval Tc - e < T < T + E, we
C

acknowledge the loss of Frechet differentiability by allowing the solution to

change discretel_ to a new state, Thus,

(28)

where

TC-ECL(t) = CL[_(_);t,O] + CL [_(_);t,T] d__ dr

+ _t+¢

O

d: )
CL [_(_);t,T] _ dT + 6CL(t;_ c

+ c] - CL[U(_);t,T - _](29) 6CL(t;ac) : CL[a(_);t'Tc c

As we have just noted for the ease of bifurcation, the £ncremental change

in the lift coefficient represented by (29) must be determined from the fully

nonlinear perturbation flow equations.

We have argued [10] that a theory for enumerating the means of invali-

dating Frechet differentiability of the aerodynamic response may be a more

inclusive way than bifurcation theory of classifying steady and unsteady

aerodynamic phenomena that are important in flight-dynamlcs applications. At

present we have identified three distinct means.
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IV.I. Aerodynamicbifurcation.

Wedefine aerodynamic bifurcation as the replacement of an unstable

equilibrium flow by a new stable equilibrium flow at a critical value of a

parameter. The onset of instability of the equilibrium state is a linear

problem that is capturable, at least in principle, through analysis of a

linearized form of the time-dependent modeledequations of turbulent flow.

An example that illustrates aerodynamic bifurcation in a context relevant

to current interests is the slender body of revolution at a high angle of

attack. Weshall describe this problem heuristically by adapting the impul-

sive flow analogy, both to demonstrate the continued usefulness of the analogy

and to makea point that will be important later. The analogy has been used

extensively to help explain the presence of the steady symmetric vortices that

are found on the leeward of slender wings and bodies at high angles of

attack. To review briefly, we refer to Figure 4 where now the moving axis

system (x,r,8) is fixed to the body nose and the body is sinking with uniform

velocity vc. On a vertical plane fixed in space, e.g., the plane X = O, if

the growth of the body is ignored, one observes the flow about a cylinder that

appears to have started from rest and is sinking at the uniform rate vc, On

the assumption that the flow in the vertical plane is essentially two-

dimensional, one is able to relate the steady growth of the vortices in the

body-axis system with distance x along the body to their time-dependent

growth behind the impulsively started cylinder, as viewed in the X = 0

plane. The latter problem has been studied extensively both experimentally

[24] and via numerical computation [25]. Thorough documentation exists for

the first appearance of separation on the leeward ray, followed by the growth

of the primary vortices, then the secondary vortices, and so forth. Also, it
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is known that beyond a critical Reynolds number (Re = 50 based on vc and on

body diameter), the equilibrium flow becomes time-dependent, leading to the

periodic shedding of vortices in the wake. This phenomenon also has been

studied extensively. See especially the work of Nishioka and Sato [26], which

demonstrates clearly that the onset of periodicity occurs at a critical

Reynolds number, an event which is, in effect, a Hopf bifurcation. We expect,

then, that at a critical Reynolds number, a perturbation velocity within a

fixed plane will have behavior that can be expressed initially as

i_t
(30) v : g(r,8)e

where if v is radial velocity, then g(r,8) is antisymmetric with respect

to 9 = O. Now, we have assumed that the axial flow induced by the cylinder

as it moves through the plane is more or less independent of X. A nominally

two-dimensional flow will permit a wave-form perturbation solution in the

direction of the third coordinate. A more general form of the perturbation

velocity v is then

(31) v = g(r,O)e imt e ikx

Transforming this solution to the body-axis system with

obtain

(32)

i_[x-U t ÷ (w/_)t]

v : g(r,e)e o

X : x - Uot , we

and we see that a stationary perturbation solution is possible in the body-

axis system when the wave speed _/_ equals the axial speed Uo.
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Experimental results indicate that a stationary asymmetric flow is the

preferred solution over a considerable range of angle of attack. We

conjecture that it is easy for an equality between Uo and the wave speed

_/_ to be achieved for the following reason. Owing to the presence of the

vortices, the axial velocity profile has a considerable overshoot beyond the

freestream value Uo. The wave speed _/_ must lie between the extremes of

the axial velocities available and hence can easily match Uo. On the other

hand, as s ÷ 90o, _ ÷ O, so a match becomesimpossible, and the perturbation

form reverts to (30) in either axis system.

The analysis leads to the following conclusions. I) Having demonstrated

its ability to fit observations, the impulsive flow analogy remains a useful

conceptual device for understanding complex three-dimensional flows.

2) Accepting I) encourages the belief that instabilities in complex three-

dimensional flows maybe essentially local phenomenawhich will yield to

localizedanalyses. 3) The form of bifurcation, and hence its classification,

may depend on the coordinate system in which it is observed. Frechet differ-

entiability on the other hand, remains Invariant across coordinate

transformations.

IV.2. Loss of analytic dependence on a parameter.

The following refers principally to time-invariant equilibrium flows.

The variation with a parameter (e.g., roll angle _) of the aerodynamic

response may develop a fold at a critical value of the parameter _c' so that

the slope of the response becomes infinite there. A jump in the response

necessarily ensues to another branch of the folded curve with an infinitesimal

increase in @ beyond _c' and hysteresis follows on the return route. Folds

25



need not be the result of bifurcation; no new branches of equilibrium flow

solutions need appear. On the other hand, folds maybe the indirect result of

bifurcation. An examplebased on the preceding study is the slender delta

wing. Just as for the slender body of revolution, bifurcation to an asymmet-

ric flow pattern occurs at a critical value of _, beyond which a finite value

of the rolling-moment coefficient C_ mayexist at zero roll angle. As shown

in Figure 5, both a positive and a negative value of C_ are possible,

depending on the sense of the asymmetry. The solution C_ = O, corresponding

to the unstable symmetric flow, also exists at _ = O, but is itself unsta-

ble. So folds must occur to accommodatethe three solution points.

Wenote that there is another important way in which time-invariant

equilibrium flows mayexperience a loss of analytic dependenceon a param-

eter: a change in flow topology. Changesin flow topology are defined unam-

biguously by changes in the numberof singular points either in the pattern of

surface skin-friction lines or in the external flow. An example is shownin

Figure 6 taken from [27]. The line of primary flow separation on a body of

revolution at a relatively low angle of attack (Fig. 6(a)) curves over

smoothly from a position characteristic of a laminar boundary-layer flow to a

position characteristic of a turbulent boundary-layer flow. At a higher angle

of attack (Fig. 6(b)), the laminar line of separation terminates at a singular

point (a focus) and the line begins again at the position characteristic of a

turbulent boundary-layer flow. Weanticipate that where such a change in flow

topology first occurs (i.e., at a critical angle of attack), not only will the

equilibrium lift response cease to be an analytic function of s, but there

will be a significant increase in the time required for the lift response to

reach a newequilibrium state. If the (potentially discontinuous) increment

in lift response yields an increment in pitching momentof the proper sign,
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this, coupled with the potentially large time lag, creates conditions for the

sudden appearance of a potentially large destabilizing aerodynamic damping

moment.

Heretofore, we have directed our extensive studies of flow topology

[28-30] toward gaining an understanding of steady three-dimensional separated

flows. We see here that the study of flow topology may have an important role

to play in the context of flight dynamics studies as well.

IV.3. Disconnected bifurcation.

We define disconnected bifurcation as the existence of an isolated branch

of equilibrium solutions that is not connected to other solution branches at

bifurcation points. The sources of this form of invalidation are still

obscure although evidence abounds of its existence in experimental studies.

It is clear that the state of the flow at the origin of the indicial

response _ = T must be involved. Disturbances there must be large enough

and of an appropriate form so as to divert the response toward a new attrac-

tor, that is, toward an alternative branch of equilibrium solutions.

As we have already seen, a source to which nominally two-dimensional

flows should be particularly susceptible is the presence of three-dimensional

disturbances in cellular patterns in the direction of the third coordinate.

As candidates for study of this situation, we cite two possibilities. The

first one concerns flow at the stagnation line of a cylindrical body. The

presence of a regular pattern of disturbances along, e.g., the leading edge of

a straight wing has been known for a long time. Attempts to explain the

pattern's presence on the basis of stability theory have been neither consis-

tent nor convincing. In a comprehensive and useful review of the subject,
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Morkovin [31] concludes that there is still no viable explanation of the

phenomenon. The second possibility could be axlsymmetric vortex breakdown.*

A solution here on the basis of a disconnected bifurcation would represent an

extension to viscous flows of Brooke Benjamin's notion [32] of "conjugate

flows" that he introduced as an aid to the explanation of inviscid axisymmet-

ric vortex breakdown.

V. MEMORYEFFECTS

Wehave postulated six major subdivisions in the form of the aerodynamic

response by meansof a set of sketches [7], and these are reproduced in

Figure 7. Of particular interest here are Figures 7(d) and 7(e), depicting

time-dependent equilibrium states. Hopf bifurcation is indicated in Fig-

ure 7(d), wherein a formerly stable tlme-invariant equilibrium state is

replaced bY a time-varying periodic equilibrium state. The equilibrium state

resulting from a Hopf bifurcation is often followed by bifurcation to a quasi-

periodic equilibrium state with further increase of the relevant parameter

(here, angle of attack). The quasl-periodic state maybe succeededby an

aperiodic (chaotic) equilibrium state.

Weindicated (28,29) how these bifurcations could be accommodatedwithin

our mathematical model. However, in the implementation, an important addi-

tional issue first arises with a Hopf bifurcation whenwe recognize that it is

necessary to specify phase as well as amplitude and frequency to completely

determine the periodic equilibrium state. The general problem can be posed as

follows: given that the past motion determines the initial condition for the

*Joint work with D. Weihs, Technlon, Tsrael.
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specification of an indicial response, howmuchof the past motion must be

acknowledgedto ensure that the equilibrium state of the response is ade-

quately specified? Wesee that there will be a definite sequence, in which at

least one piece of additional information about the past motion must be sup-

plied with each successive bifurcation. The sequence is illustrated in Fig-

ure 8. Let us note, incidentally, that with a linear system, n__oinformation

about the past motion is required in the specification of an indicial

response. This is, in effect, the most general definition of a linear sys-

tem. For a nonlinear system in which the equilibrium state is time-invariant,

the level of the past motion at the origin of the step is all that is required

to specify the equilibrium state (Fig. 8(a)). For the time-periodic equilib-

rlum state that replaces the time°invarlant state with a Hopf bifurcation, the

amplitude and frequency of the periodic state are again determined by the

level of the past motion, but an additional piece of information, the rate of

the past motion at the origin of the step must be supplied to fix the phase of

the equilibrium state (Fig. 8(b)). If the next bifurcation results in a

quasi-periodic equilibrium state, another derivative of the motion at the

origin of the step will be required to specify the additional phase

(Fig. 8(c)). It is clear that a chaotic equilibrium state will require infor-

mation about the complete past motion to ensure a complete specification.

This is how "sensitive dependenceon the initial conditions," the signature of

a chaotic state, will manifest itself in the modeling of the indicial

response. It will be recalled that the equations governing the flow already

have been postulated to be modeled equations of turbulent flow. The potential

reemergenceof chaotic behavior at a larger scale, even with modeled equa-

tions, suggests that re-modeled equations of turbulent flow may be required as

well.
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VI. APPLICATIONS TO DYNAMICAL SYSTEMS

We believe that our mathematical model, amended to accommodate the loss

of Frechet differentiability at isolated points (28,29), should be capable of

describing the aerodynamic characteristics in all six forms of aerodynamic

force (or moment) responses illustrated in Figure 7. The forms involving

aerodynamic bifurcations that result in time-dependent equilibrium states

(Figs. 7(d) and (e)) are of particular interest. Applied to problems involv-

ing dynamical maneuvers of aircraft, these forms will require extensive and

novel experimentation. Problems in this category can be divided into two

subclasses.

The first subclass of problems involves oscillatory motions about an

equilibrium state at which a loss of Frechet differentiability occurs. The

case of dynamic stall of airfoils, which we studied at length in [10], typi-

fies this subclass of problems. Similar cases need to be studied in which the

oscillatory motions are free, rather than forced, to determine how vortex-

shedding frequencies may be modulated by the system's natural frequencies,

causing, for example, "frequency lock-in." Another potentially important

question is whether vortex-shedding (from, e.g., three-dimensional analogs of

the airfoil's leading-edge separation bubble) may be a source of wing rock.

There is considerable reason to believe (cf., e.g., the experimental results

reported in [33]) that such motions will have extensive regimes of chaotic

behavior.

The second subclass of problems involves oscillatory motions that remain

within a space free of critical values of parameters. Within such a space, in

which the aerodynamic response can be assumed to remain Frechet differentia-

ble, simplifications in the modeling can be effected. In particular, the
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simple representation given by (12) can be applied with the addit£onal assump-

tion of a slowly varying motion. Dynamical systems within this subclass of

problems involving vortex-shedding from obstacles have inspired a large col-

lection of literature under the category of "vortex-induced oscillations."

Excellent surveys of the field have been published by Sarpkaya [34] and more

recently by Bearman[35]. The archetypal problem is the flexibly mounted

cylinder immersedin a uniform oncoming stream. Our application of (12) to

this problem yields a differential equation of the form*

(33) + 2U6 + <2h : B(6)sin[m(6)t]

where the quantities h,u,< characterizing the spring-mass system are illus-

trated in Figure 9(a). The forcing term, which expresses the contribution of

the fluctuating lift caused by vortex-shedding, is novel in that the ampli-

tude B and frequency _ are coupled to the velocity h on the left side.

Our modeiing approach provides an explanation as follows: Amplitude B is a

function of instantaneous Reynolds number(Fig. 9(b)), which makes it a func-

tion of total velocity fU_ + 62. Strouhal number k, the dimensionless

frequency of the fluctuating lift in the equilibrium state, is a constant,

independent of Reynolds number in the range of velocities of interest

(Fig. 9(b)). This makes m, the actual frequency, a function of h via

_od _od
(34) k - - - const

Utot FU2o + 62

*The & term in (12) is discarded on the basis of its being proportional

to vertical acceleration h, and hence normally negligible compared to the

cylinder's inertial term.
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Wehave found that (33) has a rich repertory of solutions, and appears to be

capable of capturing the distinctive features of the system's behavior (fre-

quency lock-in, amplitude Jumps, hysteresis) that careful experiments have

revealed [34,35]. The rich repertory of (33) is easier to understand if we

transform it into a set of autonomous, first-order equations. There are three

such equations, a numberwhich suffices to permit solutions having chaotic

behavior. Indeed, results of numerical computations over ranges of the param-

eters B,_,_, have revealed sequences of equilibrium states involving limit

cycles (Lyapunov dimension _ I; cf. [36] for a definition), 2-tori (Lyapunov

dimension = 2) and a strange attractor (Lyapunov dimension _ 2.68).

VI. CONCLUDINGREMARKS

This paper is a continuation of our effort to provide a consistent formu-

lation and theoretical method for studying nonlinear problems in flight dynam-

ics. Our study stressed a numberof themeswhich led to the following

conclusions:

I. Studies in nonlinear flight dynamics can be enhancedby linking them

to the commonfeatures of para!lel studies _n various allied fields. The

unifying mediumis the rapidly growing body of theory underlying research in

nonlinear dynamical systems. Exemplifying this, our approach to modeling,

which involves nonlinear indicia1 responses and generalized superposition

integrals, wasmadecompatible with one originating in the field of electrical

circuits and systems based on the use of nonlinear algebraic functional expan-

sions. Operations involved in forming the indicia! response were found to be

equivalent to Frechet differentiation. Invalidation of Fr_chet differentia-

bility proved to be the commonelemen_ signaling the necessity of amendingthe
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mathematical model to accommodatepotential discontinuous aerodynamic

behavior.

2. Three meansof invalidating Frechet differentiability were identi-

fied: i) aerodynamic bifurcation, defined as the replacement of an unstable

equilibrium flow by a new stable equilibrium flow at a critical value of a

parameter; li) loss of analytic dependence on a parameter; iii) disconnected

bifurcation, defined as the existence of an isolated branch of equilibrium

solutions not connected to other branches at bifurcation points. Acceptance

of a list of presuppositions permitted us to extrapolate our understanding of

these means from a framework involving bounded laminar flows governed by the

incompressible Navier-Stokes equations to one involving unbounded turbulent

flows governed by modeled equations based on the compressible Navier-Stokes

equations. Amended to accommodate the loss of Frechet differentiability at

isolated points, the mathematical model should be capable of describing the

aerodynamic characteristics of all six major subdivisions that we have postu-

lated for the aerodynamic response.

3. Accommodating bifurcation phenomena that involve time-dependent

equilibrium states within the mathematical model was found to raise an issue

of memory effects that becomes more important with each successive bifurca-

tion. The implication is that with the emergence of a chaotic equilibrium

state, information about the complete past motion pay be required to ensure a

complete specification of an indicial response.

4. Applied to the equation of motion governing the behavior of a flexi-

bly mounted cylinder immersed in a uniform oncoming stream, our modeling

approach yielded a novel form for the aerodynamic forcing term. Solutions of

the equation captured distinctive features of the system's behavior (frequency

lock-ln, amplitude jumps, hysteresis). Results of computations over ranges of
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the parameters revealed sequences of equilibrium states involving limit

cycles, 2-tori, and a strange attractor.
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FIGURECAPTIONS

Fig. I Maneuverreferred to space-fixed (X,Y) and moving (×,y) coordinates.

Maneuvrese rapportant aux coordinees fixees dans l'espace (X,Y) et

aux coordinees en mouvement(x,y).

Fig. 2 Formation of indlcial response.

Formation de la reponse indicial.

Fig. 3 Passageof angle of attack through a critical value %.

Passagede l'angle de l'attaque au travers d'une valeur critique _c"

Fig. 4 Body and coordinates for impulsive-flow analogy.

Corps et coordinees pour l'analogie de l'ecoulement impulsif.

Fig. 5 Folds in solution curve for rolling-moment coefficient C£.

Plis dans la courbe des solutions pour le coefficient du momentde

roulis C_.
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Fig. 6 Lines of separation on a body of revolution at angle of attack.

(a) _ = 15°; (b) _ = 35 ° .

Lignes de s_paration sur un corps de r_volut[on inclin_ _ une angle de

l'attaque. (a) s = ;5°; (b) s = 35 °

Fig. 7 Major subdivisions of aerodynamic force.

Subdivisions prlncipales de la force aerodynamique.

Fig. 8 Memory effects

Effets de !a memoire.

Fig. 9 Flexibly mounted cylinder immersed in a uniform oncoming stream.

(a) Sprlng-mass system; (b) Bifurcation diagram for stationary cylin-

der immersed in a uniform oncoming stream.

Cylindre suspendu sur des ressorts et immers_ dans un _coulement

uniform. (a) Syst_me ressort-mass; (b) Diagramme de bifurcation pour

un cylindre stationnalre Immers_ dans un _coulement uniform.
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