174 research outputs found

    Estado actual de los tumores óseos

    Get PDF
    En la presente actualización sobre el estado actual de los tumores óseos malignos, realizamos una revisión básica sobre todo en los avances de la biología molecular del osteosarcoma, sarcoma de Ewing y del condrosarcoma. Se presenta además un resumen sobre los avances y las posibilidades terapéuticas en el tratamiento quirúrgico de los tumores óseos malignos.In this article we review basic aspects of biology and surgical treatment of malignant bone tumors, mainly on advances the molecular biology of osteosarcoma, Ewing’s sarcoma and chondrosarcoma. Furthermore we present a summary of therapeutic progress and possibilities in the surgical treatment of malignant bone tumors

    Interaction of N solitons in the massive Thirring model and optical gap system: the Complex Toda Chain Model

    Full text link
    Using the Karpman-Solov''ev quasiparticle approach for soliton-soliton interaction I show that the train propagation of N well separated solitons of the massive Thirring model is described by the complex Toda chain with N nodes. For the optical gap system a generalised (non-integrable) complex Toda chain is derived for description of the train propagation of well separated gap solitons. These results are in favor of the recently proposed conjecture of universality of the complex Toda chain.Comment: RevTex, 23 pages, no figures. Submitted to Physical Review

    Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP

    Get PDF
    Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)

    CLPM: A Cross-Linked Peptide Mapping Algorithm for Mass Spectrometric Analysis

    Get PDF
    BACKGROUND: Protein-protein, protein-DNA and protein-RNA interactions are of central importance in biological systems. Quadrapole Time-of-flight (Q-TOF) mass spectrometry is a sensitive, promising tool for studying these interactions. Combining this technique with chemical crosslinking, it is possible to identify the sites of interactions within these complexes. Due to the complexities of the mass spectrometric data of crosslinked proteins, new software is required to analyze the resulting products of these studies. RESULT: We designed a Cross-Linked Peptide Mapping (CLPM) algorithm which takes advantage of all of the information available in the experiment including the amino acid sequence from each protein, the identity of the crosslinker, the identity of the digesting enzyme, the level of missed cleavage, and possible chemical modifications. The algorithm does in silico digestion and crosslinking, calculates all possible mass values and matches the theoretical data to the actual experimental data provided by the mass spectrometry analysis to identify the crosslinked peptides. CONCLUSION: Identifying peptides by their masses can be an efficient starting point for direct sequence confirmation. The CLPM algorithm provides a powerful tool in identifying these potential interaction sites in combination with chemical crosslinking and mass spectrometry. Through this cost-effective approach, subsequent efforts can quickly focus attention on investigating these specific interaction sites

    Detection of Crosslinks within and between Proteins by LC-MALDI-TOFTOF and the Software FINDX to Reduce the MSMS-Data to Acquire for Validation

    Get PDF
    Lysine-specific chemical crosslinking in combination with mass spectrometry is emerging as a tool for the structural characterization of protein complexes and protein-protein interactions. After tryptic digestion of crosslinked proteins there are thousands of peptides amenable to MSMS, of which only very few are crosslinked peptides of interest. Here we describe how the advantage offered by off-line LC-MALDI-TOF/TOF mass spectrometry is exploited in a two-step workflow to focus the MSMS-acquisition on crosslinks mainly. In a first step, MS-data are acquired and all the peak list files from the LC-separated fractions are merged by the FINDX software and screened for presence of crosslinks which are recognized as isotope-labeled doublet peaks. Information on the isotope doublet peak mass and intensity can be used as search constraints to reduce the number of false positives that match randomly to the observed peak masses. Based on the MS-data a precursor ion inclusion list is generated and used in a second step, where a restricted number of MSMS-spectra are acquired for crosslink validation. The decoupling of MS and MSMS and the peptide sorting with FINDX based on MS-data has the advantage that MSMS can be restricted to and focused on crosslinks of Type 2, which are of highest biological interest but often lowest in abundance. The LC-MALDI TOF/TOF workflow here described is applicable to protein multisubunit complexes and using 14N/15N mixed isotope strategy for the detection of inter-protein crosslinks within protein oligomers

    Integrating Ion Mobility Mass Spectrometry with Molecular Modelling to Determine the Architecture of Multiprotein Complexes

    Get PDF
    Current challenges in the field of structural genomics point to the need for new tools and technologies for obtaining structures of macromolecular protein complexes. Here, we present an integrative computational method that uses molecular modelling, ion mobility-mass spectrometry (IM-MS) and incomplete atomic structures, usually from X-ray crystallography, to generate models of the subunit architecture of protein complexes. We begin by analyzing protein complexes using IM-MS, and by taking measurements of both intact complexes and sub-complexes that are generated in solution. We then examine available high resolution structural data and use a suite of computational methods to account for missing residues at the subunit and/or domain level. High-order complexes and sub-complexes are then constructed that conform to distance and connectivity constraints imposed by IM-MS data. We illustrate our method by applying it to multimeric protein complexes within the Escherichia coli replisome: the sliding clamp, (β2), the γ complex (γ3δδ′), the DnaB helicase (DnaB6) and the Single-Stranded Binding Protein (SSB4)

    Functional Anatomy of the Female Pelvic Floor

    Full text link
    The anatomic structures in the female that prevent incontinence and genital organ prolapse on increases in abdominal pressure during daily activities include sphincteric and supportive systems. In the urethra, the action of the vesical neck and urethral sphincteric mechanisms maintains urethral closure pressure above bladder pressure. Decreases in the number of striated muscle fibers of the sphincter occur with age and parity. A supportive hammock under the urethra and vesical neck provides a firm backstop against which the urethra is compressed during increases in abdominal pressure to maintain urethral closure pressures above the rapidly increasing bladder pressure. This supporting layer consists of the anterior vaginal wall and the connective tissue that attaches it to the pelvic bones through the pubovaginal portion of the levator ani muscle, and the uterosacral and cardinal ligaments comprising the tendinous arch of the pelvic fascia. At rest the levator ani maintains closure of the urogenital hiatus. They are additionally recruited to maintain hiatal closure in the face of inertial loads related to visceral accelerations as well as abdominal pressurization in daily activities involving recruitment of the abdominal wall musculature and diaphragm. Vaginal birth is associated with an increased risk of levator ani defects, as well as genital organ prolapse and urinary incontinence. Computer models indicate that vaginal birth places the levator ani under tissue stretch ratios of up to 3.3 and the pudendal nerve under strains of up to 33%, respectively. Research is needed to better identify the pathomechanics of these conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72597/1/annals.1389.034.pd

    Fine-Tuning Enhancer Models to Predict Transcriptional Targets across Multiple Genomes

    Get PDF
    Networks of regulatory relations between transcription factors (TF) and their target genes (TG)- implemented through TF binding sites (TFBS)- are key features of biology. An idealized approach to solving such networks consists of starting from a consensus TFBS or a position weight matrix (PWM) to generate a high accuracy list of candidate TGs for biological validation. Developing and evaluating such approaches remains a formidable challenge in regulatory bioinformatics. We perform a benchmark study on 34 Drosophila TFs to assess existing TFBS and cis-regulatory module (CRM) detection methods, with a strong focus on the use of multiple genomes. Particularly, for CRM-modelling we investigate the addition of orthologous sites to a known PWM to construct phyloPWMs and we assess the added value of phylogenentic footprinting to predict contextual motifs around known TFBSs. For CRM-prediction, we compare motif conservation with network-level conservation approaches across multiple genomes. Choosing the optimal training and scoring strategies strongly enhances the performance of TG prediction for more than half of the tested TFs. Finally, we analyse a 35th TF, namely Eyeless, and find a significant overlap between predicted TGs and candidate TGs identified by microarray expression studies. In summary we identify several ways to optimize TF-specific TG predictions, some of which can be applied to all TFs, and others that can be applied only to particular TFs. The ability to model known TF-TG relations, together with the use of multiple genomes, results in a significant step forward in solving the architecture of gene regulatory networks
    corecore