93 research outputs found

    Ksenonin aivoja ja sydäntä suojaavat vaikutukset

    Get PDF

    Spoken words are processed during dexmedetomidine-induced unresponsiveness

    Get PDF
    Background: Studying the effects of anaesthetic drugs on the processing of semantic stimuli could yield insights into how brain functions change in the transition from wakefulness to unresponsiveness. Here, we explored the N400 event-related potential during dexmedetomidine- and propofol-induced unresponsiveness. Methods: Forty-seven healthy subjects were randomised to receive either dexmedetomidine (n = 23) or propofol (n = 24) in this open-label parallel-group study. Loss of responsiveness was achieved by stepwise increments of pseudo-steady-state plasma concentrations, and presumed loss of consciousness was induced using 1.5 times the concentration required for loss of responsiveness. Pre-recorded spoken sentences ending either with an expected (congruous) or an unexpected (incongruous) word were presented during unresponsiveness. The resulting electroencephalogram data were analysed for the presence of the N400 component, and for the N400 effect defined as the difference between the N400 components elicited by congruous and incongruous stimuli, in the time window 300-600 ms post-stimulus. Recognition of the presented stimuli was tested after recovery of responsiveness. Results: The N400 effect was not observed during dexmedetomidine- or propofol-induced unresponsiveness. The N400 component, however, persisted during dexmedetomidine administration. The N400 component elicited by congruous stimuli during unresponsiveness in the dexmedetomidine group resembled the large component evoked by incongruous stimuli at the awake baseline. After recovery, no recognition of the stimuli heard during unresponsiveness occurred. Conclusions: Dexmedetomidine and propofol disrupt the discrimination of congruous and incongruous spoken sentences, and recognition memory at loss of responsiveness. However, the processing of words is partially preserved during dexmedetomidine-induced unresponsiveness.</p

    Highly variable pharmacokinetics of dexmedetomidine during intensive care: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Dexmedetomidine is a selective and potent alpha2-adrenoceptor agonist licensed for use in the sedation of patients initially ventilated in intensive care units at a maximum dose rate of 0.7 μg/kg/h administered for up to 24 hours. Higher dose rates and longer infusion periods are sometimes required to achieve sufficient sedation. There are some previous reports on the use of long-term moderate to high-dose infusions of dexmedetomidine in patients in intensive care units, but none of these accounts have cited dexmedetomidine plasma concentrations.</p> <p>Case presentation</p> <p>We describe the case of a 42-year-old Caucasian woman with severe hemorrhagic pancreatitis following laparoscopic cholecystectomy who received dexmedetomidine for 24 consecutive days at a maximum dose rate of 1.9 μg/kg/h. Samples for the measurement of dexmedetomidine concentrations in her plasma were drawn at intervals of eight hours. On average, the observed plasma concentrations were well in accordance with previous knowledge on the pharmacokinetics of dexmedetomidine. There was, however, marked variability in the concentration of dexmedetomidine in her plasma despite a stable infusion rate.</p> <p>Conclusion</p> <p>The pharmacokinetics of dexmedetomidine appears to be highly variable during intensive care.</p

    Effects of dexmedetomidine, propofol, sevoflurane and S-ketamine on the human metabolome A randomised trial using nuclear magnetic resonance spectroscopy

    Get PDF
    BACKGROUND Pharmacometabolomics uses large-scale data capturing methods to uncover drug-induced shifts in the metabolic profile. The specific effects of anaesthetics on the human metabolome are largely unknown. OBJECTIVE We aimed to discover whether exposure to routinely used anaesthetics have an acute effect on the human metabolic profile. DESIGN Randomised, open-label, controlled, parallel group, phase IV clinical drug trial. SETTING The study was conducted at Turku PET Centre, University of Turku, Finland, 2016 to 2017. PARTICIPANTS One hundred and sixty healthy male volunteers were recruited. The metabolomic data of 159 were evaluable. INTERVENTIONS Volunteers were randomised to receive a 1-h exposure to equipotent doses (EC50 for verbal command) of dexmedetomidine (1.5 ng ml(-1); n = 40), propofol (1.7 mu g ml(-1); n = 40), sevoflurane (0.9% end-tidal; n = 39), S-ketamine (0.75 mu g ml(-1); n = 20) or placebo (n = 20). MAIN OUTCOME MEASURES Metabolite subgroups of apolipoproteins and lipoproteins, cholesterol, glycerides and phospholipids, fatty acids, glycolysis, amino acids, ketone bodies, creatinine and albumin and the inflammatory marker GlycA, were analysed with nuclear magnetic resonance spectroscopy from arterial blood samples collected at baseline, after anaesthetic administration and 70 min post-anaesthesia. RESULTS All metabolite subgroups were affected. Statistically significant changes vs. placebo were observed in 11.0, 41.3, 0.65 and 3.9% of the 155 analytes in the dexmedetomidine, propofol, sevoflurane and S-ketamine groups, respectively. Dexmedetomidine increased glucose, decreased ketone bodies and affected lipoproteins and apolipoproteins. Propofol altered lipoproteins, fatty acids, glycerides and phospholipids and slightly increased inflammatory marker glycoprotein acetylation. Sevoflurane was relatively inert. S-ketamine increased glucose and lactate, whereasbranched chain amino acids and tyrosine decreased. CONCLUSION A 1-h exposure to moderate doses of routinely used anaesthetics led to significant and characteristic alterations in the metabolic profile. Dexmedetomidine-induced alterations mirror a2-adrenoceptor agonism. Propofol emulsion altered the lipid profile. The inertness of sevoflurane might prove useful in vulnerable patients. S-ketamine induced amino acid alterations might be linked to its suggested antidepressive properties.Peer reviewe

    Association of extracerebral organ failure with 1-year survival and healthcare-associated costs after cardiac arrest : an observational database study

    Get PDF
    BackgroundOrgan dysfunction is common after cardiac arrest and associated with worse short-term outcome, but its impact on long-term outcome and treatment costs is unknown.MethodsWe used nationwide registry data from the intensive care units (ICU) of the five Finnish university hospitals to evaluate the association of 24-h extracerebral Sequential Organ Failure Assessment (24h-EC-SOFA) score with 1-year survival and healthcare-associated costs after cardiac arrest. We included adult cardiac arrest patients treated in the participating ICUs between January 1, 2003, and December 31, 2013. We acquired the confirmed date of death from the Finnish Population Register Centre database and gross 1-year healthcare-associated costs from the hospital billing records and the database of the Finnish Social Insurance Institution.ResultsA total of 5814 patients were included in the study, and 2401 were alive 1year after cardiac arrest. Median (interquartile range (IQR)) 24h-EC-SOFA score was 6 (5-8) in 1-year survivors and 7 (5-10) in non-survivors. In multivariate regression analysis, adjusting for age and prior independency in self-care, the 24h-EC-SOFA score had an odds ratio (OR) of 1.16 (95% confidence interval (CI) 1.14-1.18) per point for 1-year mortality.Median (IQR) healthcare-associated costs in the year after cardiac arrest were Euro47,000 (Euro28,000-75,000) in 1-year survivors and Euro12,000 (Euro6600-25,000) in non-survivors. In a multivariate linear regression model adjusting for age and prior independency in self-care, an increase of one point in the 24h-EC-SOFA score was associated with an increase of Euro170 (95% CI Euro150-190) in the cost per day alive in the year after cardiac arrest. In the same model, an increase of one point in the 24h-EC-SOFA score was associated with an increase of Euro4400 (95% CI Euro3300-5500) in the total healthcare-associated costs in 1-year survivors.ConclusionsExtracerebral organ dysfunction is associated with long-term outcome and gross healthcare-associated costs of ICU-treated cardiac arrest patients. It should be considered when assessing interventions to improve outcomes and optimize the use of resources in these patients.Peer reviewe
    corecore