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Effects of dexmedetomidine
, propofol, sevoflurane and

S-ketamine on the human metabolome

A randomised trial using nuclear magnetic resonance spectroscopy
Aleksi J. Nummela, Lauri T. Laaksonen, Timo T. Laitio, Roosa E. Kallionpää, Jaakko W. Långsj€o,
Joonas M. Scheinin, Tero J. Vahlberg, Harri T. Koskela, Viljami Aittomäki, Katja J. Valli,
Antti Revonsuo, Mikko Niemi, Markus Perola and Harry Scheinin
BACKGROUND Pharmacometabolomics uses large-scale
data capturing methods to uncover drug-induced shifts in the
metabolic profile. The specific effects of anaesthetics on the
human metabolome are largely unknown.

OBJECTIVE We aimed to discover whether exposure to
routinely used anaesthetics have an acute effect on the
human metabolic profile.

DESIGN Randomised, open-label, controlled, parallel group,
phase IV clinical drug trial.

SETTING The study was conducted at Turku PET Centre,
University of Turku, Finland, 2016 to 2017.

PARTICIPANTS One hundred and sixty healthy male volun-
teers were recruited. The metabolomic data of 159 were
evaluable.

INTERVENTIONS Volunteers were randomised to receive a
1-h exposure to equipotent doses (EC50 for verbal com-
mand) of dexmedetomidine (1.5 ngml�1; n¼40), propofol
(1.7mgml�1; n¼40), sevoflurane (0.9% end-tidal; n¼39),
S-ketamine (0.75mgml�1; n¼20) or placebo (n¼20).

MAIN OUTCOME MEASURES Metabolite subgroups of
apolipoproteins and lipoproteins, cholesterol, glycerides
and phospholipids, fatty acids, glycolysis, amino acids,
ketone bodies, creatinine and albumin and the inflammatory
marker GlycA, were analysed with nuclear magnetic
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resonance spectroscopy from arterial blood samples col-
lected at baseline, after anaesthetic administration and
70min post-anaesthesia.

RESULTS All metabolite subgroups were affected. Statisti-
cally significant changes vs. placebo were observed in 11.0,
41.3, 0.65 and 3.9% of the 155 analytes in the dexmedeto-
midine, propofol, sevoflurane and S-ketamine groups, respec-
tively. Dexmedetomidine increased glucose, decreased
ketone bodies and affected lipoproteins and apolipoproteins.
Propofol altered lipoproteins, fatty acids, glycerides and phos-
pholipids andslightly increased inflammatorymarker glycopro-
tein acetylation. Sevoflurane was relatively inert. S-ketamine
increasedglucose and lactate,whereasbranched chain amino
acids and tyrosine decreased.

CONCLUSION A 1-h exposure to moderate doses of rou-
tinely used anaesthetics led to significant and characteristic
alterations in the metabolic profile. Dexmedetomidine-
induced alterations mirror a2-adrenoceptor agonism. Propo-
fol emulsion altered the lipid profile. The inertness of sevo-
flurane might prove useful in vulnerable patients. S-ketamine
induced amino acid alterations might be linked to its sug-
gested antidepressive properties.
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Introduction

Metabolomics has provided promising results in the fields

of early diagnosis, biomarker discovery and stratification

of disease risk-groups.1–4 Pharmacometabolomics, a rel-

atively new research direction, uses large scale data-

capturing methods to uncover shifts in the metabolic

profile induced by pharmacotherapy. Further analysis

of these changes in biochemical pathways and identifica-

tion of baseline predictors of patient response via bio-

marker acquisitionmay eventually offer an opportunity to

enhance early prediction of treatment outcomes, to reveal

novel mechanisms of drug action and to identify meta-

bolic pathways contributing to drug response pheno-

types.2,5–8 Ultimately, pharmacometabolomics might

enable the discovery of novel tools for clinical deci-

sion-making, the optimisation of personalised medical

therapy and precision medicine.

The pharmacometabolomic effects of anaesthetic agents

remain insufficiently documented. The effects of dex-

medetomidine on insulin secretion, S-ketamine on circu-

lating catecholamines and propofol on triglyceride levels

are examples of pharmacological attributes that may have

interesting metabolic ramifications.9–21 In this explor-

atory study, the aim was to discover whether four rou-

tinely used anaesthetics, dexmedetomidine, propofol,

sevoflurane and S-ketamine, cause acute alterations in

the human metabolic profile in the absence of confound-

ing factors present in clinical anaesthesia and surgery. An
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infographic summarising the study design, metabolomic

analysis and results is shown in Fig. 1.

Materials and methods
Ethics
Approval for this study (LOC-2016, EudraCT 2015-

004982-10, ClinicalTrials.gov Identifier NCT02624401)

was provided by the Ethics Committee of Hospital

District of Southwest Finland, Turku, Finland on 15

December 2015.

Trial design and participants
This randomised, open-label, controlled, parallel group,

phase IV clinical drug trial was conducted at Turku PET

Centre, University of Turku, Finland, as a part of ‘The

Neural Mechanisms of Anaesthesia and Human Con-

sciousness’ project. A detailed description of the study

methods has been published previously in an article

comparing the effects of anaesthetic agents on regional

cerebral glucose metabolism.22

One hundred and sixty healthy, American Society of

Anaesthesiologists class I (ASA I) male volunteers were

randomised to receive dexmedetomidine (Dexdor

100mgml�1, Orion Pharma, Espoo, Finland; n¼ 40),

propofol (Propolipid 10mgml�1; Fresenius Kabi, Bad

Homburg, Germany; n¼ 40), sevoflurane (Sevoflurane

100%, Abbvie, North Chicago, Illinois, U.S.A; n¼ 40),
y
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S-ketamine (Ketanest-S 25mgml�1, Pfizer, NY, U.S.A;

n¼ 20) or placebo (Ringer’s acetate, n¼ 20). The inclu-

sion criteria have been described earlier.22 Written

informed consent was obtained from all participants in

accordance with the Declaration of Helsinki.

Only male participants were studied because of radiation

exposure related to a subsequent PET study. Due to the

exploratory nature of the study, a formal power analysis

was not considered applicable. Randomisation was per-

formed using balanced permuted block sizes of 16 as
Fig. 2 Consort flow diagram for participants in the study
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Anaesthetic protocol and monitoring
All participants fasted from midnight until time of anaes-

thesia. Intake of alcohol, caffeine and medications were

prohibited preceding anaesthesia. The duration of the

anaesthetic administration protocol was 60min; details

have been published earlier.22 Intravenous anaesthetics

were administered using target-controlled infusion with a
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Harvard 22 syringe pump (Harvard Apparatus, South

Natick, Massachusetts, USA) and Stanpump software

(www.opentci.org/code/stanpump). Previously reported

pharmacokinetic parameters were used (Domino, Talke,

March-models).23–25 Sevoflurane was administered and

monitored using a Drager Primus anaesthesia workstation

(Dragerwerk AG & Co KGaA, Lübeck, Germany). The

details of participant preparation and monitoring have

been described earlier.22

The target concentrations (EC50 for verbal command)

were based on previous studies: 1.5 ng ml�1 for dexme-

detomidine, 1.7mgml�1 for propofol, 0.75mgml�1 for S-

ketamine and end-tidal target of 0.9% for sevoflurane.26–

28 The arterial blood concentrations of the intravenous

anaesthetics were measured off-line and the end-tidal

concentration of sevoflurane was monitored continuously

during anaesthetic administration.

Blood sampling and metabolomic analysis
Arterial blood samples for metabolomic analysis were

collected before anaesthetic administration (timepoint

1), at the end of 60min of anaesthetic administration

(timepoint 2) and 70min after the cessation of anaes-

thetic administration (timepoint 3). A 9ml whole blood

EDTA sample was collected at each timepoint. The

blood samples were protected from light and placed on

ice immediately after sampling. Within 30min, plasma

was separated using cold centrifugation (þ48C) and

divided into amber tubes (Matrix 1.0mL 2D Screw tubes

Amper PP; Thermo Scientific, USA). Amber tube sam-

ples were immediately frozen at -208C and the samples

were transferred to -708C within the same day keeping

the temperature under -708C by means of dry ice. Sam-

pling, storage and transfer of the metabolomics samples

were conducted according to the specifications of the

company responsible for metabolite quantification

(Nightingale Health, Helsinki, Finland).

Metabolic biomarkers were quantified from plasma sam-

ples using high-throughput nuclear magnetic resonance

(NMR) spectroscopy (Nightingale Health Ltd, Hel-

sinki, Finland). The NMR metabolomics platform is

based on proton NMR spectroscopy, wherein each mol-

ecule with hydrogen atoms gives a characteristic spectral

signal. This signal is of a distinctive shape, which

permits the identification of molecules, and the signal

area is proportional to the concentration of the molecule

in the sample. Overlaps of individual molecular signals

and quantification of absolute concentrations are han-

dledvia proprietarydataprocessingmethods.Thismethod

provides simultaneous quantification of routine lipids,

lipoprotein subclass profiling, fatty acid composition and

various low-molecular weight metabolites, including

amino acids, ketone bodies and glycolysis-related metab-

olites in molar concentration units. The metabolic profile

obtained can be considered a targeted metabolic profile as

specific, predetermined metabolites are quantified. The
Eur J Anaesthesiol 2022; 39:521–532
company uses proprietary data processing methods but a

more detailed description of the current NMR methodol-

ogy has been reported previously.4,29

From each sample, 146 metabolite markers and nine

ratios were analysed or calculated. The measured bio-

markers included 101 lipoprotein measures, 37 lipidre-

lated markers (including 16 fatty acid, nine cholesterol,

nine glycerides and phospholipids and three apolipopro-

tein measures), concentrations of eight amino acids, three

glycolysis-related metabolites, three ketone bodies, cre-

atinine and albumin and an inflammatory marker glyco-

protein acetylation. The metabolite markers within each

of the aforementioned metabolite subgroups are illus-

trated in the forest plots in Appendix A, http://links.lww.

com/EJA/A603.

In vitro analyses
Because of the lipid emulsion formulation of propofol and

due to extensive changes observed in the lipoprotein

markers during propofol infusion in vivo, as a quality

control measure, in vitro analyses were carried out to

ensure that the lipid formulation of propofol had no direct

effect on NMR quantification of metabolite markers in

vitro at propofol target concentration of 1.7mgml�1. The

same NMR instrumentation as in the main analyses was

used (Nightingale Health). In vitro analyses were con-

ducted using pooled human serum samples that had been

previously prepared from whole blood samples collected

in lithium heparin tubes and stored at -808C, similar to

the main analysis. Propofo was added to pooled samples

in incremental concentrations (1.75 to 100mgml�1).

Metabolite concentrations were measured and compared

with a blank pooled sample (without added propofol) and

with each added propofol concentration. In addition, the

mean changes in very low-density lipoprotein particle

(VLDL) markers in the propofol group were compared

with the VLDL changes in the in vitro experiment to

assess the possibility of soybean oil accumulation during

continuous infusion. The results of the in vitro analysis

are described in detail in Appendix B, http://links.lww.

com/EJA/A604.

Statistical analysis
Logarithmic transformation was performed for metabo-

lites with skewness more than 1 (42% of all metabolites).

All metabolites were scaled to baseline standard devia-

tion (SD) to enable comparisons across metabolites with

different units. The mean group difference in SD change

units is referred to as the standard deviation score (SDS)

and was chosen instead of the Z-score to allow easy

comparison to earlier studies. Zero-values, including

values under the detection limit of the NMR spectros-

copy method, were omitted from the analysis (4% of all

measured values). The statistical analysis of metabolite

markers was performed using repeated measures analysis

of variance (ANOVA) with each metabolite marker as

http://www.opentci.org/code/stanpump
http://links.lww.com/EJA/A603
http://links.lww.com/EJA/A603
http://links.lww.com/EJA/A604
http://links.lww.com/EJA/A604
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outcome and time as a within factor and group as a

between factor.30 Because all metabolites were analysed

using separate ANOVAmodels, there are no assumptions

concerning the dependency between metabolites. The

mean differences in SD changes (95% CI) between

groups for all metabolites were estimated from a repeated

measures model using group by time interaction effect.

The anaesthetic-placebo and anaesthetic-anaesthetic

group differences in SD changes were estimated between

timepoints 1 vs. 2 and 1 vs. 3. To account for multiple

testing (155 metabolites, 10 pairwise group comparisons

and two timepoint comparisons) the observed P values

were Bonferroni corrected by factor 3100 such that an

alpha threshold of 0.05 remained. Data are expressed as

SDS (95% CI) between timepoints 1 vs. 2, if not other-

wise stated. Statistical analyses were carried out with SAS

software (version 9.4; SAS Institute Inc., Cary, North

Carolina, USA).

For data visualisation, forest plots and line graphs were

created using R (Version 1.1.383, https://www.R-project.

org/) gglpot2 function (Version 3.2.1, https://ggplot2.tidy-

verse.org). The infographic was created using Microsoft

PowerPoint (version 16.16.18). The cross-correlations of

the analytes were calculated based on the current data of

threetimepointsof159participants (excluding twomissing

timepoint samples in theplacebogroup,n¼ 475,Appendix

C, http://links.lww.com/EJA/A605). The colour coding

represents Spearman’s correlation coefficients.

Results
The baseline characteristics of the volunteers are sum-

marised in Table 1. The study was completed as planned

and no significant changes in the vital signswere observed.

Anaesthetic concentrations were stable in all groups. The

mean concentrations of propofol and sevoflurane approxi-

mated the predicted concentrations, but dexmedetomi-

dine and S-ketamine were approximately 40%higher than

targeted (Fig. 3). The metabolomics data of 159 partici-

pantswere evaluable, as all timepoint samples of one in the

sevoflurane group were lost, as were two individual time-

point samples in the placebo group (Fig. 4).

In anaesthetic-placebo comparisons (timepoints 1 vs. 2

and 1 vs. 3), significant changes were observed in all

metabolite subgroups (Fig. 2). Of the 155 analysed

metabolites there were significant changes vs. placebo

in 17 (11.0%), 64 (41.3%), one (0.65%) and six (3.9%) of
Table 1 Baseline characteristics of volunteers

n Height (cm)

Dexmedetomidine 40 179.1�6.5
Propofol 40 180.5�6.0
Sevoflurane 39 179.7�7.2
S-ketamine 20 182.7�5.4
Placebo 20 182.4�8.8

Data are given as mean�SD or mean [range].
the analytes in the dexmedetomidine, propofol, sevoflur-

ane and S-ketamine groups, respectively. Themajority of

these changes remained significant in one or more anaes-

thetic-anaesthetic comparisons (Appendix A, http://links.

lww.com/EJA/A603). Due to the large number of signifi-

cant changes, up to three metabolites in each anaesthetic

group showing the largest statistically significant SDS

change (timepoints 1 vs. 2) are shown in detail in Table 2,

Fig. 4 and Fig. 5. All analysed biomarker changes in all

inter-group comparisons are shown in Appendix A, http://

links.lww.com/EJA/A603. A heatmap containing cross-

correlations of measured metabolites is provided in

Appendix C, http://links.lww.com/EJA/A605.

In the dexmedetomidine group, strongest observed

changes were the elevation of glucose and concomitant

decrease in ketone bodies (Table 2). Changes in HDL

composition and a decrease in very large HDL concen-

tration of -0.29 SDS (95%CI -0.42 to -0.17), P¼ 0.02 were

observed. The anaesthetic-placebo changes in glucose, 3-

hydroxybutyrate and very large HDL phospholipid and

free cholesterol content were significant in all inter-

group comparisons.

Extensive changes in the lipid profilewere observed in the

propofol group. Strongest increase was observed in satu-

rated fatty acids to total fatty acids ratio (SFA_FA), very

large VLDL free cholesterol content (XL_VLDL_FC)

and very largeHDL triglyceride content (Table 2). Unsat-

urated fatty acids decreased by -0.45 SDS (95% CI -0.60

to -0.30), P< 0.001 and saturated fatty acids (SFA)

increased by 0.54 SDS (95% CI 0.37 to 0.70),

P< 0.001. Significant changes in lipoprotein concentra-

tion and content were observed in a range of lipoprotein

particles sizes (Appendix A, http://links.lww.com/EJA/

A603). Only a modest increase in serum total triglyceride

level (Serum_TG) 0.32 SDS (95% CI 0.21 to 0.42),

P< 0.001 was observed. The inflammatory marker gly-

coprotein acetylation (GlycA) increased by 0.37 SDS

(95% CI 0.21 to 0.53), P¼ 0.023. Thirty-seven metab-

olites showed significant changes in all inter-group

comparisons in metabolite subgroups of lipoproteins,

fatty acids and glycerides and phospholipids (Appendix

A, http://links.lww.com/EJA/A603).

In the sevoflurane group, only the increase in alanine was

significant and was 0.6 SDS (95% CI 0.4 to 0.81),

P< 0.001.
Eur J Anaesthesiol 2022; 39:521–532

Weight (kg) BMI Age (years)

77.3�10.8 24.1�2.9 24.7 [20 to 30]
77.6�11.1 23.8�3.3 23.4 [18 to 28]
79.5�9.7 24.6�2.8 24.4 [19 to 30]
79.9�10.6 23.9�3.0 23.4 [20 to 30]
82.9�14.2 24.8�2.6 23.1 [20 to 28]

https://www.r-project.org/
https://www.r-project.org/
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
http://links.lww.com/EJA/A605
http://links.lww.com/EJA/A603
http://links.lww.com/EJA/A603
http://links.lww.com/EJA/A603
http://links.lww.com/EJA/A603
http://links.lww.com/EJA/A605
http://links.lww.com/EJA/A603
http://links.lww.com/EJA/A603
http://links.lww.com/EJA/A603
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Fig. 3 Individual measured concentrations of the four anaesthetics: Dexmedetomidine, propofol, sevoflurane, S-ketamine
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The study drugs were administered for 60 minutes, but their concentrations were measured at 20, 30, 40 and 50 minutes. Targeted concentrations
are depicted with red lines. Mean measured concentrations have been published earlier.22
In the S-ketamine group, strongest changes were

observed in glucose, lactate and leucine. Glucose and

lactate increased, while leucine decreased (Table 2).

Isoleucine decreased by -0.89 SDS (95% CI -1.25 to

-0.54), P¼ 0.006, tyrosine by -0.89 SDS (95% CI -1.27

to -0.52), P¼ 0.017 (timepoints 1 vs. 3). The decrease in

leucine was significant in all inter-group comparisons.

In vitro analyses
Briefly, the in vitro analysis showed that propofol emul-

sion, when directly added to baseline samples at con-

centrations corresponding to the target concentration

of 1.7mgml�1, caused only minor changes in the
Eur J Anaesthesiol 2022; 39:521–532
metabolic profile. Interestingly, the in vivo propofol

infusion with a target concentration of 1.7mgml�1

resulted in a change in VLDL markers corresponding

to the levels observed at propofol concentration of

17.5mgml�1 in vitro. The detailed results of in vitro

analyses are described in Appendix B, http://links.lww.

com/EJA/A604.

Discussion
In this study, we evaluated the metabolic profiles of

anaesthetic exposure to equipotent doses (EC50 for ver-

bal command) of dexmedetomidine, propofol, sevoflur-

ane and S-ketamine in healthy men using NMR

http://links.lww.com/EJA/A604
http://links.lww.com/EJA/A604
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Fig. 4 Forest plots of nine selected anaesthetic-placebo comparisons
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Free cholesterol in lipoprotein particles
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Data are reported as SDS and 95% confidence intervals. The vertical lines depict 0 and �1 SDS thresholds. Positive values (to the right) depict an
increase in metabolite concentration compared with placebo, while negative values (to the left) represent a decrease compared with placebo. The
colour coding represents the changes during anaesthetic administration (in timepoints 1 vs. 2) and from baseline to 70min after anaesthetic
administration (in timepoints 1 vs. 3). Statistically significant changes are highlighted in red and purple (timepoints 1 vs. 2 and 1 vs. 3, respectively).
Logarithmic transformation was carried out for skewed metabolites, these metabolites are marked with (log). Ala, alanine; AcAce, acetoacetate;
bOHBut, 3-hydroxybutyrate; Glc, glucose; Lac, lactate; Leu, leucine; SFA_FA, ratio of saturated fatty acids to total fatty acids; XL_HDL_TG,
triglycerides in very large HDL particles; XL_VLDL_FC, free cholesterol in very large VLDL particles. Forest plots with all metabolites and all inter-
group comparisons are shown in Appendix A, http://links.lww.com/EJA/A603.
spectroscopy. Interestingly, marked alterations in the

metabolic profiles of anaesthetics vs. placebo were

revealed, regardless of moderate dosing and a relatively

short anaesthetic exposure. Furthermore, the metabolic

profiles of four commonly used anaesthetics were

quite different.

The changes in the metabolic profile of dexmedetomi-

dine were mainly seen in glucose and ketone bodies.

Dexmedetomidine increased glucose concentration 29%

from baseline. Changes in HDL composition and a

decrease in very large HDL concentration were

observed. Increased glucose and concomitantly

decreased ketone bodies in fasted individuals reflect

dexmedetomidine-induced inhibition of insulin secre-

tion in response to a2-adrenoceptor agonism.15,16 It is

possible that the alterations in HDLmarkers too (Appen-

dix A, http://links.lww.com/EJA/A603) are linked to (a2-

adrenoceptor agonism, as selective alpha adrenoceptor

blockade is known to increase HDL levels.31
Propofol induced a subtle increase in the inflammatory

markerGlycA, the concentration ofwhichwas 3.8%higher

in the propofol group at timepoint 2 when compared with

placebo. GlycA is a complex NMR signal arising from the

N-acetyl groups in circulating glycoproteins that are

involved in the acute phase response. Chronically elevated

GlycA has been associated with a gene network enriched

for neutrophil functions, elevated levels of inflammatory

cytokines, long-term risk of serious infection and all-cause

mortality.32,33 However, little is known about acute altera-

tions in GlycA.34 Our interpretation of the results is that

even thoughGlycA elevation seemsmechanistically inter-

esting, the magnitude of GlycA increase in response to

short-term propofol administration is small and unlikely to

have clinical implications.34

Propofol induced marked changes in the lipid profile, and

surprisingly, only a modest increase in total triglycerides

was observed. In the propofol group, serum total triglyc-

erides increased 8.1% (timepoints 1 vs. 2). As a
Eur J Anaesthesiol 2022; 39:521–532
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comparison, ingestion of a poly-unsaturated fatty acid

rich meal in healthy individuals, lead to 75% increase in

total triglycerides within 2 h.35

The in vitro analysis showed that the concentration of

VLDL markers in the propofol group in vivo corre-

sponded to VLDL values observed at 10-fold higher

propofol concentration in the in vitro analysis (Appendix

B, http://links.lww.com/EJA/A604). This, and further

analysis of the NMR difference spectra suggested that

accumulation of soybean oil, a propofol emulsion constit-

uent, affected the observed change from chylomicrons

and extremely large VLDL to medium VLDL markers

and creatinine; other markers were largely unaffected.

Accumulation of propofol emulsion constituents during a

relatively brief 60-min infusion is highly interesting, as

many of the known complications of propofol infusion are

associated with derangements in lipid metabolism.

Research has shown that propofol emulsion and Intrali-

pid, a proxy for the lipid emulsion of propofol, caused

similar changes in a small subset of blood lipids when the

soybean oil content was equal between the groups.36

Somewhat surprisingly, the ratio of saturated fatty acids

to total fatty acids (SFA_FA) was increased in the pro-

pofol group. This is interesting, as soybean oil and

Intralipid contain mostly unsaturated fatty acids. The

unsaturated fatty acids decreased and saturated fatty

acids increased, and were relatively unaffected by addi-

tion of propofol (1.75 to 17.5mgl�1) in in vitro analysis

(Appendix B, http://links.lww.com/EJA/A604). Previous

in vitro studies on human skeletal and heart muscle cell

bioenergetics have shown a profound inhibitory effect of

propofol on fatty acid oxidation (FAO).37,38 On the basis

of previous research, after an overnight fast, FAO may

account for up to 70% of total body energy expenditure.39

In theory, a disruption of fatty acid utilisation could lead

to changes in the circulating lipid profile. However, as

free fatty acid availability exceeds the needs for FAO by a

substantial amount, one could argue that changes in fatty

acid ratios would take time to emerge. Whether propofol

induced changes in fatty acid utilisation or FAO could

affect the elevation of SFA_FA remains unknown.

On the basis of our results, the lipid load induced by

propofol could be reflected by the increase of SFA_FA

during a 60-min propofol infusion, whereas triglyceride

levels remained relatively unchanged. It is worth con-

templating whether the cumulation of propofol emulsion

constituents or the alterations observed in the lipid profile

could, in prolonged infusions and with vulnerable

patients, be associated with the known complications

of propofol infusion: hypertriglyceridaemia, hypertrigly-

ceridaemia associated pancreatitis and the propofol infu-

sion syndrome.19,20,40 Currently, triglyceride levels of

ICU patients are routinely screened for early diagnosis

of propofol-induced hypertriglyceridaemia, which tends

to develop after a median of 4 to 7 days in vulnerable

http://links.lww.com/EJA/A604
http://links.lww.com/EJA/A604
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Fig. 5 Line graphs showing the concentration changes in nine selected metabolites in individual subjects in each study group for three timepoints
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patients.19 Whether changes in SFA_FA levels precede

the rise in circulating triglycerides remains an open

question.

S-ketamine increased glucose and lactate. Lactate con-

centration was 53.8% higher than the corresponding

concentration in placebo group at timepoint 2. This

increase in lactate seems biologically significant, as the

concentration of lactate at timepoint 2 in the S-ketamine

group was 53 and 10.6% of the lactate levels observed

during moderate and high-intensity exercise, respec-

tively.41 A hyperadrenergic state caused by S-ketamine

offers a possible explanation for the observed increase in

lactate and glucose.17,18,42,43 The gradual decrease in

tyrosine may also be explained by the hyperadrenergic

state induced by S-ketamine, as tyrosine is funnelled to

noradrenaline synthesis.

Interestingly, previous studies have shown that subanaes-

thetic doses of racemic ketamine increased cerebral

blood flow (CBF) and regionally elevated cerebral glu-

cose metabolic rate (GMR) without affecting the cerebral

metabolic rate of oxygen (CMRO2). Anaesthetic doses of

S-ketamine increased GMR in the thalamus, with only

minor alterations in the CMRO2.
26,44,45 Increased GMR

in the absence of increased CMRO2 suggested a role of

nonoxidative glucose metabolism in the CNS during

ketamine infusion, possibly related to a ketamine-

induced increase in glutamate cycling.45,46 However,

on the basis of current findings, it is not possible to

identify the origins of the observed lactate release.

The moderate increase in circulating lactate during iso-

lated S-ketamine administration is nevertheless an inter-

esting finding. Whether S-ketamine-induced lactataemia

exaggerates lactataemia during critical illness in compar-

ison to other anaesthetics is worth investigating.

S-ketamine decreased the levels of branched chain amino

acids (BCAA) isoleucine, leucine and valine. The

decrease in the aromatic amino acid (AAA) tyrosine

reached statistical significance after the cessation of

anaesthetic administration. At timepoint 3, the concen-

trations of isoleucine, leucine, valine and tyrosine were 8,

12.1, 2.5 and 7.4% lower in the S-ketamine group as

compared with the placebo group. To offer a biological

framework for these changes, a 35-min running exercise

in healthy individuals decreased isoleucine by 9.0%,

leucine 10.3%, valine 6.7% and tyrosine 4%, and the

decrease in tyrosine was nonsignificant.47 In this respect,

the magnitude of changes in BCAA may have biological

significance. It seems tempting to consider that reduction

of BCAA could be linked to increased muscle activity.

However, the energy demands of working skeletal mus-

cle during a 35-min running exercise probably outweigh

an adrenergic stimulus caused by S-ketamine at rest.

Thus, the changes in muscle cell bioenergetics in

response to adrenergic stimuli at rest seem insufficient

to account for the observed decrease in BCAA levels.
Eur J Anaesthesiol 2022; 39:521–532
Changes in BCAA concentrations are especially interest-

ing, as S-ketamine has been approved for the treatment

of ‘‘treatment-resistant’’ depression. BCAAs decrease

brain uptake of AAAs due to a shared competitive trans-

port mechanism across the blood-brain barrier. AAA

tryptophan is a precursor of serotonin while AAA tyrosine,

via transformation to dopamine, serves as a precursor for

noradrenaline synthesis. Increases in circulating BCAAs

lead to decreases in serotonin and catecholamine synthesis

and release in the brain.48 Thus, decreases in circulating

BCAAs could, in theory, increase the effects of serotonin

and noradrenaline in the brain, providing a plausible

mechanism for the antidepressant effects of S-ketamine.39

It is noteworthy, that the mechanism of action of com-

monly used antidepressants rely on selective serotonin and

serotonin-noradrenaline reuptake inhibition. In addition,

an earlier study revealed that the reduction in symptoms of

major depressive disorder induced by sertraline was asso-

ciated with decreases in BCAAs valine, leucine and iso-

leucine in serum samples.49 Therefore, the current results

may help explain the underlying mechanisms of the anti-

depressant effects of S-ketamine.39

On the basis of the current results, the most inert anaes-

thetic seems to be sevoflurane. Observed increases in

motor restlessness may explain the increase in alanine

concentration.47,50,51 Sevoflurane sedation in ICU has

been suggested as a viable alternative to propofol or

midazolam sedation.52 The current findings on the rela-

tive inertness of sevoflurane during short-term adminis-

tration is a promising finding, which could prove useful in

vulnerable patients with critical illness. However, the

effects of prolonged sevoflurane sedation on the human

metabolome remain unknown.

A few limitations must be addressed. First, the doses

were moderate and the duration of anaesthetic exposure

relatively short when compared with clinical anaesthesia.

Second, only healthy male ASA I volunteers were stud-

ied, without the accompanying medications or comorbid-

ities generally present with general anaesthesia.

However, our aim was to discover and compare the direct

effects of anaesthetic agents on the metabolic profile

without the confounding factors usually present during

the peri-operative period. This compromise leads to a

relatively pure and comparable depiction of metabolic

response to specific anaesthetics, yet limits our ability to

offer clinically relevant predictions based on metabolite

change. Further pragmatic studies are needed to assess

the predictive value of metabolic changes associated with

specific anaesthetics. Third, on the basis of the current

results, we are unable to differentiate the effects of

propofol from those of the accompanying lipid emulsion,

as there was no control group for isolated lipid emulsion.

However, as propofol is exclusively administered in lipid

emulsion, the combined metabolic effects are of interest.

Lastly, the metabolites that are closely related and share

metabolic routes, are to some extent cross-correlated; this
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has been illustrated in the heatmap in Appendix C, http://

links.lww.com/EJA/A605.

In conclusion, this exploratory study revealed that, in

absence of peri-operative confounding factors, a 1-h expo-

sure to moderate doses of four routinely used anaesthetics

induced unique alterations in the metabolic profile in

healthy individuals as measured by NMR spectroscopy.

Dexmedetomidine induced metabolic changes mirroring

a2-adrenoceptor agonism and the inhibition of insulin

secretion. Propofol emulsion influenced the lipid profile

and elevated slightly the inflammatorymarkerGlycA.The

inertness of sevoflurane might prove useful in vulnerable

patients. Changes in amino acid profiles could be linked to

the suggested antidepressant properties of S-ketamine. A

need for further pragmatic studies on the clinical impact of

anaesthetic induced shifts in the metabolome exists.
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