154 research outputs found

    Effects of Imatinib Mesylate (Gleevec) on Human Islet NF-kappaB Activation and Chemokine Production In Vitro

    Get PDF
    Imatinib Mesylate (Gleevec) is a drug that potently counteracts diabetes both in humans and in animal models for human diabetes. We have previously reported that this compound in human pancreatic islets stimulates NF-κB signaling and islet cell survival. The aim of this study was to investigate control of NF-κB post-translational modifications exerted by Imatinib and whether any such effects are associated with altered islet gene expression and chemokine production in vitro.Human islets were either left untreated or treated with Imatinib for different timepoints. IκB-α and NF-κB p65 phosphorylation and methylation were assessed by immunoblot analysis. Islet gene expression was assessed using a commercial Pathway Finder microarray kit and RT-PCR. Islet chemokine production was determined by flow cytometric bead array analysis.Human islet IκB-α and Ser276-p65 phosphorylation were increased by a 20 minute Imatinib exposure. Methylation of p65 at position Lys221 was increased after 60 min of Imatinib exposure and persisted for 3 hours. Microarray analysis of islets exposed to Imatinib for 4 hours revealed increased expression of the inflammatory genes IL-4R, TCF5, DR5, I-TRAF, I-CAM, HSP27 and IL-8. The islet release of IL-8 was augmented in islets cultured over night in the presence of Imatinib. Following 30 hours of Imatinib exposure, the cytokine-induced IκB-α and STAT1 phosphorylation was abolished and diminished, respectively. The cytokine-induced release of the chemokines MIG and IP10 was lower in islets exposed to Imatinib for 30 hours.Imatinib by itself promotes a modest activation of NF-κB. However, a prolonged exposure of human islets to Imatinib is associated with a dampened response to cytokines. It is possible that Imatinib induces NF-κB preconditioning of islet cells leading to lowered cytokine sensitivity and a mitigated islet inflammation

    Proinflammatory Cytokines Activate the Intrinsic Apoptotic Pathway in β-Cells

    Get PDF
    OBJECTIVE:Proinflammatory cytokines are cytotoxic to beta-cells and have been implicated in the pathogenesis of type 1 diabetes and islet graft failure. The importance of the intrinsic mitochondrial apoptotic pathway in cytokine-induced beta-cell death is unclear. Here, cytokine activation of the intrinsic apoptotic pathway and the role of the two proapoptotic Bcl-2 proteins, Bad and Bax, were examined in beta-cells.RESEARCH DESIGN AND METHODS:Human and rat islets and INS-1 cells were exposed to a combination of proinflammatory cytokines (interleukin-1beta, interferon-gamma, and/or tumor necrosis factor-alpha). Activation of Bad was determined by Ser136 dephosphorylation, mitochondrial stress by changes in mitochondrial metabolic activity and cytochrome c release, downstream apoptotic signaling by activation of caspase-9 and -3, and DNA fragmentation. The inhibitors FK506 and V5 were used to investigate the role of Bad and Bax activation, respectively. [...

    Assay for high glucose-mediated islet cell sensitization to apoptosis induced by streptozotocin and cytokines

    Get PDF
    Pancreatic β-cell apoptosis is known to participate in the β-cell destruction process that occurs in diabetes. It has been described that high glucose level induces a hyperfunctional status which could provoke apoptosis. This phenomenon is known as glucotoxicity and has been proposed that it can play a role in type 1 diabetes mellitus pathogenesis. In this study we develop an experimental design to sensitize pancreatic islet cells by high glucose to streptozotocin (STZ) and proinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor (TNF)-α and interferon (IFN)-γ]-induced apoptosis. This method is appropriate for subsequent quantification of apoptotic islet cells stained with Tdt-mediated dUTP Nick-End Labeling (TUNEL) and protein expression assays by Western Blotting (WB)

    Interleukin-1 Stimulates β-Cell Necrosis and Release of the Immunological Adjuvant HMGB1

    Get PDF
    BACKGROUND: There are at least two phases of β-cell death during the development of autoimmune diabetes: an initiation event that results in the release of β-cell-specific antigens, and a second, antigen-driven event in which β-cell death is mediated by the actions of T lymphocytes. In this report, the mechanisms by which the macrophage-derived cytokine interleukin (IL)-1 induces β-cell death are examined. IL-1, known to inhibit glucose-induced insulin secretion by stimulating inducible nitric oxide synthase expression and increased production of nitric oxide by β-cells, also induces β-cell death. METHODS AND FINDINGS: To ascertain the mechanisms of cell death, the effects of IL-1 and known activators of apoptosis on β-cell viability were examined. While IL-1 stimulates β-cell DNA damage, this cytokine fails to activate caspase-3 or to induce phosphatidylserine (PS) externalization; however, apoptosis inducers activate caspase-3 and the externalization of PS on β-cells. In contrast, IL-1 stimulates the release of the immunological adjuvant high mobility group box 1 protein (HMGB1; a biochemical maker of necrosis) in a nitric oxide-dependent manner, while apoptosis inducers fail to stimulate HMGB1 release. The release of HMGB1 by β-cells treated with IL-1 is not sensitive to caspase-3 inhibition, while inhibition of this caspase attenuates β-cell death in response to known inducers of apoptosis. CONCLUSIONS: These findings indicate that IL-1 induces β-cell necrosis and support the hypothesis that macrophage-derived cytokines may participate in the initial stages of diabetes development by inducing β-cell death by a mechanism that promotes antigen release (necrosis) and islet inflammation (HMGB1 release)

    Accelerated apoptotic death and <i>in vivo</i> turnover of erythrocytes in mice lacking functional mitogen- and stress-activated kinase MSK1/2

    Get PDF
    The mitogen- and stress-activated kinase MSK1/2 plays a decisive role in apoptosis. In analogy to apoptosis of nucleated cells, suicidal erythrocyte death called eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine (PS) externalization. Here, we explored whether MSK1/2 participates in the regulation of eryptosis. To this end, erythrocytes were isolated from mice lacking functional MSK1/2 (msk−/−) and corresponding wild-type mice (msk+/+). Blood count, hematocrit, hemoglobin concentration and mean erythrocyte volume were similar in both msk−/− and msk+/+ mice, but reticulocyte count was significantly increased in msk−/− mice. Cell membrane PS exposure was similar in untreated msk−/− and msk+/+ erythrocytes, but was enhanced by pathophysiological cell stressors ex vivo such as hyperosmotic shock or energy depletion to significantly higher levels in msk−/− erythrocytes than in msk+/+ erythrocytes. Cell shrinkage following hyperosmotic shock and energy depletion, as well as hemolysis following decrease of extracellular osmolarity was more pronounced in msk−/− erythrocytes. The in vivo clearance of autologously-infused CFSE-labeled erythrocytes from circulating blood was faster in msk−/− mice. The spleens from msk−/− mice contained a significantly greater number of PS-exposing erythrocytes than spleens from msk+/+ mice. The present observations point to accelerated eryptosis and subsequent clearance of erythrocytes leading to enhanced erythrocyte turnover in MSK1/2-deficient mice

    Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins

    Get PDF
    Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD+ tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase β, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care

    Women and omega-3 fatty acids

    No full text
    Omega-3 fatty acids (omega-3 FA) are constituents of the membranes of all cells in the body and are precursors of locally produced hormones, eicosanoids, which are important in the prevention and treatment of various diseases, especially in women. Omega-3 FA are of interest in some of the most common conditions affecting women. One mechanism underlying dysmenorrhea is a disturbed balance between antiinflammatory, vasodilator eicosanoids derived from omega-3 FA and proinflammatory, vasoconstrictor eicosanoids derived from omega-6 FA. Increased intake of omega-3 FA can reverse the symptoms in this condition by decreasing the amount of omega-6 FA in cell membranes. An increased prostacyclin/thromboxane ratio induced by omega-3 FA can facilitate pregnancy in women with infertility problems by increasing uterine blood flow. Supplementation with omega-3 FA during pregnancy lowers the risk of premature birth and can increase the length of pregnancy and birth weight by altering the balance of eicosanoids involved in labor and promote fetal growth by improving placental blood flow. Intake of omega-3 FA during pregnancy and breast feeding may facilitate the child's brain development. There is also some evidence that supplementation with omega-3 FA might help to prevent preeclampsia, postpartum depression, menopausal problems, postmenopausal osteoporosis, and breast cancer. Furthermore, because elevated triglyceride levels are associated with cardiovascular disease, especially in women; and because omega-3 FA have powerful effects on triglycerides, women in particular gain from an increased intake of these fatty acids. This is especially important in women receiving hormone therapy, which can increase triglyceride levels. The quality of the omega-3 FA preparation is important. It should have an appropriate antioxidant content not to induce lipid peroxidation, and its content of dioxin and polychlorinated biphenyls (PCBs) should be well below the established safe limit. Target Audience: Obstetricians & Gynecologists, Family Physicians Learning Objectives: After completion of this article, the reader should be able to describe the function and actions of omega-3 and omega-6 fatty acids, to outline the potential advantages of omega-3 fatty acid supplementation, and to list the potential sources of omega-3 fatty acids
    corecore