689 research outputs found

    An ε -Uniform Numerical Method for a System of Convection-Diffusion Equations with Discontinuous Convection Coefficients and Source Terms

    Get PDF
    In this paper, a parameter-uniform numerical method is suggested to solve a system of singularly perturbed convection-diffusion equations with discontinuous convection coefficients and source terms subject to the Dirichlet boundary condition. The second derivative of each equation is multiplied by a distinctly small parameter, which leads to an overlap and interacting interior layer. A numerical method based on a piecewise uniform Shishkin mesh is constructed. Numerical results are presented to support the theoretical results

    A Novel Approach for Enhancing Performance of VoD Systems

    Get PDF
    Multimedia applications such as Video-on-Demand (VoD), Live streaming, Internet stock quotes, Internet radio, audio/music delivery, video surveillance are of growing interest among general public. Existing systems that support these kinds of applications such as centralized server, independent server nodes, and proxy incur significant delay and serve only less number of videos. In this research, a multi-server system that utilizes a split and merge scheme is proposed to reduce the waiting time. This system helps us to achieve load balancing, while increasing the number of videos being served. Our simulation model consists of a single main multimedia server and a set of streaming servers. The performance of the proposed system for various K values is evaluated in the VoD scenario. The results show that the proposed multi-server scheme performs better in terms of initial latency and number of videos being served, compared to the other existing schemes. Index Terms—Component, formatting, style, styling, insert

    Design of a Novel Low Cost Point of Care Tampon (POCkeT) Colposcope for Use in Resource Limited Settings

    Get PDF
    Introduction: Current guidelines by WHO for cervical cancer screening in low- and middle-income countries involves visual inspection with acetic acid (VIA) of the cervix, followed by treatment during the same visit or a subsequent visit with cryotherapy if a suspicious lesion is found. Implementation of these guidelines is hampered by a lack of: trained health workers, reliable technology, and access to screening facilities. A low cost ultra-portable Point of Care Tampon based digital colposcope (POCkeT Colposcope) for use at the community level setting, which has the unique form factor of a tampon, can be inserted into the vagina to capture images of the cervix, which are on par with that of a state of the art colposcope, at a fraction of the cost. A repository of images to be compiled that can be used to empower front line workers to become more effective through virtual dynamic training. By task shifting to the community setting, this technology could potentially provide significantly greater cervical screening access to where the most vulnerable women live. The POCkeT Colposcope’s concentric LED ring provides comparable white and green field illumination at a fraction of the electrical power required in commercial colposcopes. Evaluation with standard optical imaging targets to assess the POCkeT Colposcope against the state of the art digital colposcope and other VIAM technologies. Results: Our POCkeT Colposcope has comparable resolving power, color reproduction accuracy, minimal lens distortion, and illumination when compared to commercially available colposcopes. In vitro and pilot in vivo imaging results are promising with our POCkeT Colposcope capturing comparable quality images to commercial systems. Methods: Rapid 3D printing, consumer grade light sources, and cameras were used to construct the TVDC. The TVDC’s concentric LED ring provides comparable white and green field illumination at a fraction of the electrical power required in commercial colposcopes, and crossed polarizers provide a reduction in glare. Evaluation was performed using standard optical imaging targets to assess the TVDC against the state of the art digital colposcope and other VIA technologies. Results: Our TVDC has comparable resolving power, color reproduction accuracy, minimal lens distortion, and illumination when compared to commercially available colposcopes. In vitro and pilot in vivo imaging results are promising with our TVDC capturing images of comparable quality to commercial systems. Conclusion: The TVDC is capable of capturing images suitable for cervical lesion analysis. Our portable low cost system will be useful for increasing access to cervical cancer screening and diagnostics in resource-limited settings by providing a more readily portable and easy to use device for medical personnel.The image data and support information that is published in the article "Design of a Novel Low Cost Trans-Vaginal Digital Colposcope for use in Resource Limited Settings" are available at: http://dukespace.lib.duke.edu/dspace/handle/10161/8357.National Institutes of Health (US) 5R21CA162747-0

    Selective APRIL Blockade Delays Systemic Lupus Erythematosus in Mouse

    Get PDF
    SLE pathogenesis is complex, but it is now widely accepted that autoantibodies play a key role in the process by forming excessive immune complexes; their deposits within tissues leading to inflammation and functional damages. A proliferation inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) superfamily mediating antibody-producing plasma cell (PC)-survival that may be involved in the duration of pathogenic autoantibodies in lupus. We found significant increases of APRIL at the mRNA and protein levels in bone marrow but not spleen cells from NZB/W lupus mice, as compared to control mice. Selective antibody-mediated APRIL blockade delays disease development in this model by preventing proteinuria, kidney lesions, and mortality. Notably, this was achieved by decreasing anti-DNA and anti-chromatin autoantibody levels, without any perturbation of B- and T- cell homeostasis. Thus, anti-APRIL treatment may constitute an alternative therapy in SLE highly specific to PCs compared to other B-cell targeting therapies tested in this disease, and likely to be associated with less adverse effects than any anti-inflammatory and immunosuppressant agents previously used

    Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction

    Get PDF
    Myocardial infarction remains one of the top leading causes of death in the world and the damage sustained in the heart eventually develops into heart failure. Limited conventional treatment options due to the inability of the myocardium to regenerate after injury and shortage of organ donors require the development of alternative therapies to repair the damaged myocardium. Current efforts in repairing damage after myocardial infarction concentrates on using biologically derived molecules such as growth factors or stem cells, which carry risks of serious side effects including the formation of teratomas. Here, we demonstrate that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization in cardiovascular tissue after myocardial infarction, without the addition of any biologically derived factors or stem cells. When the GAG mimetic nanofiber gels were injected in the infarct site of rodent myocardial infarct model, increased VEGF-A expression and recruitment of vascular cells was observed. This was accompanied with significant degree of neovascularization and better cardiac performance when compared to the control saline group. The results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair. Statement of Significance We present a synthetic bioactive peptide nanofiber system can enhance cardiac function and enhance cardiovascular regeneration after myocardial infarction (MI) without the addition of growth factors, stem cells or other biologically derived molecules. Current state of the art in cardiac repair after MI utilize at least one of the above mentioned biologically derived molecules, thus our approach is ground-breaking for cardiovascular therapy after MI. In this work, we showed that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization and cardiomyocyte differentiation for the regeneration of cardiovascular tissue after myocardial infarction in a rat infarct model. When the peptide nanofiber gels were injected in infarct site at rodent myocardial infarct model, recruitment of vascular cells was observed, neovascularization was significantly induced and cardiac performance was improved. These results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair. © 2017 Acta Materialia Inc

    In Vivo Optical Metabolic Imaging of Long-Chain Fatty Acid Uptake in Orthotopic Models of Triple-Negative Breast Cancer

    Get PDF
    Targeting a tumor’s metabolic dependencies is a clinically actionable therapeutic approach; however, identifying subtypes of tumors likely to respond remains difficult. The use of lipids as a nutrient source is of particular importance, especially in breast cancer. Imaging techniques offer the opportunity to quantify nutrient use in preclinical tumor models to guide development of new drugs that restrict uptake or utilization of these nutrients. We describe a fast and dynamic approach to image fatty acid uptake in vivo and demonstrate its relevance to study both tumor metabolic reprogramming directly, as well as the effectiveness of drugs targeting lipid metabolism. Specifically, we developed a quantitative optical approach to spatially and longitudinally map the kinetics of long-chain fatty acid uptake in in vivo murine models of breast cancer using a fluorescently labeled palmitate molecule, Bodipy FL c16. We chose intra-vital microscopy of mammary tumor windows to validate our approach in two orthotopic breast cancer models: a MYC-overexpressing, transgenic, triple-negative breast cancer (TNBC) model and a murine model of the 4T1 family. Following injection, Bodipy FL c16 fluorescence increased and reached its maximum after approximately 30 min, with the signal remaining stable during the 30–80 min post-injection period. We used the fluorescence at 60 min (Bodipy60), the mid-point in the plateau region, as a summary parameter to quantify Bodipy FL c16 fluorescence in subsequent experiments. Using our imaging platform, we observed a two- to four-fold decrease in fatty acid uptake in response to the downregulation of the MYC oncogene, consistent with findings from in vitro metabolic assays. In contrast, our imaging studies report an increase in fatty acid uptake with tumor aggressiveness (6NR, 4T07, and 4T1), and uptake was significantly decreased after treatment with a fatty acid transport inhibitor, perphenazine, in both normal mammary pads and in the most aggressive 4T1 tumor model. Our approach fills an important gap between in vitro assays providing rich metabolic information at static time points and imaging approaches visualizing metabolism in whole organs at a reduced resolution

    Affine modifications and affine hypersurfaces with a very transitive automorphism group

    Full text link
    We study a kind of modification of an affine domain which produces another affine domain. First appeared in passing in the basic paper of O. Zariski (1942), it was further considered by E.D. Davis (1967). The first named author applied its geometric counterpart to construct contractible smooth affine varieties non-isomorphic to Euclidean spaces. Here we provide certain conditions which guarantee preservation of the topology under a modification. As an application, we show that the group of biregular automorphisms of the affine hypersurface XCk+2X \subset C^{k+2} given by the equation uv=p(x1,...,xk)uv=p(x_1,...,x_k) where pC[x1,...,xk],p \in C[x_1,...,x_k], acts mm-transitively on the smooth part regXX of XX for any mN.m \in N. We present examples of such hypersurfaces diffeomorphic to Euclidean spaces.Comment: 39 Pages, LaTeX; a revised version with minor changes and correction
    corecore