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Abstract 
 
In this paper, a parameter-uniform numerical method is suggested to solve a system of singularly 
perturbed convection-diffusion equations with discontinuous convection coefficients and source 
terms subject to the Dirichlet boundary condition. The second derivative of each equation is 
multiplied by a distinctly small parameter, which leads to an overlap and interacting interior 
layer. A numerical method based on a piecewise uniform Shishkin mesh is constructed. 
Numerical results are presented to support the theoretical results. 
 
Keywords: Singular perturbation problems, Shishkin mesh, discontinuous convection    

coefficients 
 
MSC 2010 No.:  65L10   

 
 

1.  Introduction 
 
Singular perturbation problems (SPPs) arise in various fields of applied mathematics such as 
fluid dynamics, elasticity, quantum mechanics, electrical networks, chemical reactor-theory, bio-
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chemical kinetics, gas porous electrodes theory, aerodynamics, plasma dynamics, oceanography, 
diffraction theory, reaction-diffusion processes and many other areas. Examples of SPPs include 
the linearized Navier-Stokes equation of fluid at high Reynolds number, heat transportation 
problem with large Peclet numbers, magneto-hydrodynamics duct problems at Hartman number 
and drift diffusion equation of semiconductor device modeling. It is a well-known fact that the 
solutions of the SPPs have a multi-scale character (non-uniform behaviour), that is, there are thin 
layer(s)(Boundary layer region) where the solution varies rapidly but when distant from the 
layer(s)(Outer region) the solution behaves regularly and varies slowly. There is a vast literature 
dealing with SPPs with smooth coefficients and source term for single equation (see Miller et al. 
(1996) – Farrel et al. (2000a) and references therein) and for system of differential equations (see 
Mathews (2000) – Tamilselvan and Ramanujam (2010) and references therein). Recently, a few 
authors have developed uniform numerical methods for SPPs with non-smooth data, that is, 
discontinuous source term and/or discontinuous convection coefficient and/or discontinuous 
diffusion coefficient for single equation Farrell et al. (2000b) – Mythili and Ramanujam (2009) 
and for system of equations Tamilselvan et al. (2007, 2010). 
 
In Matthews et al. (2000a, 2000b), the authors studied a system of two coupled singularly 
perturbed reaction-diffusion equations for the cases 1=<0 21   and 1=<0 21   . It is 
shown that a parameter robust numerical method can be constructed which gives first order 
convergence. Madden and Stynes (2003) examined the same problem for the cases 

1<0 21   . The solution to the system has boundary layers that overlap and interact. The 
structure of these layers was analysed and this led to the construction of a piecewise uniform 
mesh that is a variant of the usual Shishkin mesh. They showed that the scheme is almost first 
order uniform convergence in the perturbation parameters. In Valanarasu and Ramanujam 
(2004), the authors proposed an asymptotic numerical initial value method to solve a system of 
two coupled singularly perturbed convection-diffusion equations which involves solving a set of 
initial value problems and a system of terminal value problem by fitted operator method. Cen 
(2005) has examined the same for the case 1<<0 21   , which leads to an overlap and 
interacting boundary layer. 
 
In this paper, a system of singularly perturbed convection-diffusion equations with discontinuous 
convection coefficients and source terms are considered on the unit interval (0,1).=  A single 
discontinuity in the convection coefficients and source terms are assumed to occur at a point 

.d  It is convenient to introduce the notation ,1)(=),(0,= dd    and to denote the jump 
at d  in any function with ).()(=)]([  dwdwdw  In fact, we consider the following class of 
problems: find  
 

0 1 2
1 2, ( ) ( ) ( )y y C C C           

 
such that 
 

1 1 1 1 1 11 1 12 2 1

2 2 2 2 2 21 1 22 2 2

( ) ( ) ( ) = ( ),

( ) ( ) ( ) = ( ), ,

L y y a x y b x y b x y f x

L y y a x y b x y b x y f x x



  

     

       
 (1) 
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 with the boundary conditions  
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 The parameters (0,1), 21   and without loss of generality we shall assume that 

1.<<0 21    The functions )(),( xfxa ii  for 21,=i  are assumed to be sufficiently smooth on 

{0,1}   and the function )(xbij  for 21,=, ji  are to be sufficiently smooth on .  The 

function )(),( xfxa ii  for 21,=i  are assumed to have a single jump discontinuity at the point 

.d  In general this discontinuity give raise to interior layers in the solutions of the problems. 
Because )(),( xfxa ii  for 21,=i  are discontinuous at d , the solution Tyyy ),(= 21  of (1) - (2) 

does not necessarily have continuous second derivative at the point .d  The above weakly 
coupled system of singularly perturbed boundary value problem can be written in the vector form 
as  
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Note:  
 
Throughout this paper, C denotes a generic constant (sometimes subscripted) which is 
independent of the singular perturbation parameters 21,  and the dimension of the discrete 
problem .N  Let .,:  DDy  The appropriate norm for studying the convergence of 
numerical solution to the exact solution of a singular perturbation problem is the maximum norm 

.|)(|sup=|||| xyy
Dx

D


 In case of vectors ,y  we define Txyxyxy )|)(||,)(|(=|)(| 21 and 

}.,||{max=|| 21 DDD yyy ||||||||  Throughout the paper, we shall also assume that 1
1

 NC  

and 1
2

 NC  as is often assumed for convection dominated problems. 
 

Remark 1.1.   
 
For simplicity, we are considering the functions 211211 ,, bbb  and 22b  are sufficiently smooth on 

.  If we allow a simple jump discontinuity at dx =  for those functions, the results of this paper 
remain true. The sign condition imposed on 21, aa  is motivated by the argument given in Farrel 
et al. (2004a) for single equation.  

 
 

2.  Preliminaries 
 
 In this section, first we prove the existence of a solution of the BVP (1)-(2). Then we derive a 
maximum principle and stability result for the same. Further bounds for the solution, smooth and 
singular components and their derivatives are derived. 

 
Theorem 2.1.  
 
The BVP (1)-(2) has a solution such that 1y , 2y ).()()( 210   CCC   
 
Proof: 
  
The proof is by construction. Let Tuuu ),(= 21

  and Tuuu ),(= 21
  be particular solutions of the 

following systems of equations  
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where K and *K are matrices with constant entries to be chosen suitably. Note that on the open 

interval ,1<,<0,   and  , cannot have internal maximum or minimum and hence  
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For the matrices K  and *K to exist is required that  
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This follows from observing the fact that 0.>)()( 11112222      

 
Theorem 2.2. (Maximum Principle)  
 
Suppose that a function )()(,,))(),((=)( 20

2121
  CCyyxyxyxy T satisfies 
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1 x
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2 x
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both. Further,  0x  or .=0 dx  Also .,0))((  xxsy   

 
Case (i): 0,=))(( 011 xsy   for .   Therefore, )( 11 sy   attains its minimum at .0x  Then,  

 
))()(()())(()()()(<0 11111111111 xsyxbxsyxaxsyxyL    

                                                                          0,))()(( 2212  xsyxb   
 

which is a contradiction. 
 
Case (ii): Similarly, we can consider the case 0,=))(( 022 xsy   for  0x  and arrive at a 

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 8 [2013], Iss. 1, Art. 12

https://digitalcommons.pvamu.edu/aam/vol8/iss1/12



AAM: Intern. J., Vol. 8, Issue 1 (June 2013)                                                                                                             197                               
          

   

contradiction. 
 

Case (iii): 0,=))(( 011 xsy   for .=0 dx  Therefore )( 11 sy   attains its minimum at .0x  Then,  

 
0,<)]([)]([=)]()[(0 11011 dsdyxsy    

 
which is a contradiction. 
 
Case (iv): Similarly, we can consider the case 0,=))(( 022 xsy   for dx =0  and arrive at a 

contradiction. 
 

Hence, .,0)(  xxy   
  

Theorem 2.3. (Stability Result)  
 
If  
 

)()()(, 210
21

  CCCyy ,  
 
then  
 

1 1 2 2 1 2| ( ) | max{| (0) |, | (1) |, | (0) |, | (1) |, , },jy x C y y y y L y L y      
 || || || ||  

                                                                                                      , = 1, 2x j . 
 
Proof: 
 
Set  
 

}.,|,(1)||,(0)||,(1)||,(0){|max= 212211 
|||||||| yLyLyyyyCA   

 
Define two barrier functions Txwxwxw ))(),((=)( 21

  as  
 

 
 
 
 

 
Further, we observe that 
 

 0)(0,)(,0(1),0(0) 21   xwLxwLww   
 

and ,0)]([
'

 dw  by a proper choice of A . Then,  xxw ,0)( , by Theorem 2.2, 
which completes the proof.  
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To derive parameter uniform error estimates we need sharper bounds on the derivatives of the 
solution .y  Consider the following decomposition of the solution ,= wvy   into a non-layer 

component Tvvv ),(= 21  and an interior layer component .),(= 21
Twww Define the discontinuous 

functions Tvvv ),(= 02010  and Tvvv ),(= 12111  to be respectively the solutions of the problems  

 
,),(=)()( 00


  xxfvxBvxA  0 0(0) = (0), (1) = (1),v y v y  
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We define the discontinuous functions v  and w  respectively by  
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and  
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.0=(1)),]('[=)]('[),]([=)]([,0=(0) wdvdwdvdww   (6) 
 

Note that wvy =  is in ).(1 C  The following lemma provides the bound on the derivatives of 
the nonlayer and interior components of the solution .y   
 
Lemma 2.4.   
 
Let v  and w  be the solution of the BVP (3) - (4) and (5) - (6) respectively. Then there exists a 
constant C such that for all  x  we have for 1,2=j ,  
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where  
 

),)/((exp=),)/((exp= 2211
  xdBxdB    

and 
}.,{min=and))/((exp=),)/((exp= 212211

  dxBdxB    

 
Proof: 
 
Using appropriate barrier functions, applying Theorem 2.2 and adopting the method of proof 
used in Cen (2005), the present lemma can be proved.  

  
 
3.   Discrete Problem 
 
The BVP (1) - (2) is discretised using a fitted mesh method composed of a finite difference 
operator on a piecewise uniform mesh. When 1,<<0 21   the solution of (1) - (2) has 
overlapping interior layer at .= dx  This necessitates the construction of a mesh that is uniform 
on each of six subintervals. We define  
 

2 2 1

2 1

2 2
= min , ln , = min , , ln

2 4 2

d d
N N
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A piecewise uniform mesh N

2,1   is constructed by dividing [0,1] into six subintervals 

],[],,[],,[],,[],[0,
2111122

    ddddddddd and 

1].,[
2

 d  

 
Then, subdivide ][0,

2

 d  and 1],[
2

 d  into N/4 mesh intervals and subdivide each of the 
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other four intervals into /8N  mesh intervals. The interior points of the mesh are denoted by  
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   then )(= 12  O  and the result can be easily obtained. 

Therefore, we only consider the cases /2<
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The difference operator NL  can be defined as   
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3.1.  Numerical Solution Estimates 
 
Analogous to the continuous results stated in Theorem 2.2 and Theorem 2.3 one can prove the 
following result.  
 
Theorem 3.1.  
 
For any mesh function )( ixZ , assume that 
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                                  0,))()()(())()()(( *2*2*12*1*1*11 
iiiiii

xSxZxbxSxZxb   

 
 a contradiction. Also for ,> /2* Ni

xx  we have  

 
))()(()())()((=))()(( *1*1*1*1*1

2
1**1 iiiiiii

N xSxZDxaxSxZxSxZL     

                                0,))()()(())()()(( *2*2*12*1*1*11 
iiiiii

xSxZxbxSxZxb   

 
a contradiction. 
 
Case (ii): Similarly, we can consider the case N

i
x

2,1*   and 0,=)()( *2*2 ii
xSxZ   and arrive 

at a contradiction. 
 
Case (iii): /2* = Ni

xx . Then,  

 

1 * 1 * 1 * 1 * 1 * 1 *( ( ) ( )) ( ( ) ( )) 0, if ( ) ( ) = 0
i i i i i i

D Z x S x D Z x S x Z x S x      , 

or  

2 * 2 * 2 * 2 * 2 * 2 *( ( ) ( )) ( ( ) ( )) 0, if ( ) ( ) = 0,
i i i i i i

D Z x S x D Z x S x Z x S x       

 
which is a contradiction. Hence, we get the desired result.  

  
Theorem 3.2 .  
 
If )( ij xY  is the solution of the problem (7), then  

 
.1,2,=,|)(|

2,1

N
iij xjCxY   

 
 To bound the nodal error |,))((| ixyY   we define mesh functions LV  and ,RV  which 

approximate v  respectively to the left and right of the point of discontinuity .= dx  Then, we 
construct mesh functions LW  and ,RW  so that the amplitude of the jump )()( dWdW LR   is 

determined by the size of the jump .|)]([| dv  Also LW  and ,RW  are sufficiently small away from 

the interior layer region. Using these mesh functions the nodal error |))((| ixyY   is then 

bounded separately outside and inside the layer. Define the mesh functions LV  and RV  to be the 
solutions of the following discrete problems respectively :  
 

1,/21,...,=for),(=)( NixfxVL iiL
N  (9) 

 
),(=)((0),=)( /20 dvxVvxV NLL  (10) 

 
and  
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( ) = ( ), for = / 2 1, ..., 1,N

R i iL V x f x i N N   (11) 

 
(1).=)(),(=)( /2 vxVdvxV NRNR   (12) 

 
Now, we define the mesh functions LW  and RW  to be the solutions of the following system of 
finite difference equations  
 

( ) = 0, for = 1, ..., / 2 1,N
L iL W x i N   (13) 

 
( ) = 0, for = / 2 1, ..., 1,N

R iL W x i N N   (14) 

 

0( ) = 0, ( ) = 0,L R NW x W x  (15) 

 
),()(=)()( /2/2/2/2 NLNLNRNR xVxWxVxW   (16) 

 
).()(=)()( /2/2/2/2 NLNLNRNR xVDxWDxVDxWD    (17) 

 
Now, we can define )( ixY  to be  

 
( ) ( ), for = 1, ..., / 2 1,

( ) = ( ) ( ), for = / 2,

( ) ( ) = ( ) ( ), for = / 2 1, ..., 1.

L i L i

i R i R i

L i L i R i R i

V x W x i N

Y x W x V x i N

V x W x V x W x i N N

  



    

 (18) 

 

Since ,|)(| /2 









C

C
xY N  we have 










C

C
xW NL |)(| /2  and .|)(| /2 










C

C
xW NR  Using the arguments in 

Cen (2005), for /4,Ni   we have  
 
















1

1
1

/2 |)(||)(|
NC

NC
NxWxW NLiL , 

and  

.|)(||)(||))((|
1

1















NC

NC
xwxWxwW iiLiL  (19) 

 
Similarly, for /4,3Ni   we have  
















1

1
1

/2 |)(||)(|
NC

NC
NxWxW NRiR  

 
and  
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.|)(||)(||))((|
1

1















NC

NC
xwxWxwW iiRiR  (20) 

 
Lemma 3.3.   
 
At each mesh point ,

2,1

N
ix   the regular component of the error satisfies the estimate for 

21,=j ,  
1

1

, for = 1, , / 2 1,
| ( )( ) |

(1 ) , for = / 2 1, , 1,

i
j j i

i

C x N i N
V v x

C x N i N N





   
  




 

 
where v  and V  are the solutions of (3) - (4) and (9) - (12) respectively.  

  
Proof: 

Consider the local truncation error, .|))((|
1

1















NC

NC
xvVL i

N  Using the two mesh functions  

),)(()(=)( iii xvVxx    where for 1,2=j , 

 
1

1

/ , for = 1, , / 2 1,
( ) =

(1 ) / (1 ), for = / 2 1, , 1,

i
j i

i

C x N d i N
x

C x N d i N N






 


   




 

 
on the appropriate sides of the discontinuity, and applying discrete maximum principle, we  
get ,,0)(

2,1

N
ii xx   which completes the proof.  

  
Lemma 3.4.   
 
At each mesh point ,N

ix   the singular component of the error satisfies the estimate  

 

,
)ln(

)ln(
|))((|

21

21















NNC

NNC
xwW i  

 
where w  and W  are the solutions of (5) - (6) and (13) - (17) , respectively.  

  
Proof: 
 

First we consider the case .ln
2

==andln
2

== 1

11

2

22
NN





 

  From (19) and 

(20), it follows that  
 

.|))((|and|))((| 1
/43

1
/4

  CNxwWCNxwW NRNL  
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Adopting the procedure in Farrel et al. (2004a), Cen (2005, Theorem 3); using the inequality 

2/

2
1/

1

  tktk ee
   for ,1,2,=,/> 1 kkt   and Lemma 2.4, we have  

 
for /8,3,1,/4=2;1,= NNij    
 

|)(|)()(|)(|)(|))((| (2)
1

(3)
11 ijiiijijiijijL

N
j xwxxxaxwxxxwLWL     

      2
212

1 )(    NC , 

and  
 
for 1,/2,1,/83=2;1,=  NNij   we have  
 

|)(|)()(|)(|)(|))((| (2)
1

(3)
11 ijiiijijiijijL

N
j xwxxxaxwxxxwLWL     

      ).( 2
2

2
11

1   NC  

 
Similarly for 1,/85,1,/2=2;1,=  NNij   we have  
 

|)(|)()(|)(|)(|))((| (2)
1

(3)
11 ijiiijijiijijR

N
j xwxxxaxwxxxwLWL    

        )( 2
2

2
11

1    NC , 

 
and for 1,/86,/8,5=1,2;= NNij   we have  
 

|)(|)()(|)(|)(|))((| (2)
1

(3)
11 ijiiijijiijijR

N
j xwxxxaxwxxxwLWL    

         .)( 2
212

1    NC  

At the mesh point ,=/2 dxN  since 0=)()( /2NxWDD    we have  

 
).()(=)()()()( /2/2/2 NNN xwDDxwDDxWDD    

 
Let 3H  and 4H  be the mesh interval size on either side of ./2Nx  Thus,  

 
|)()(|=|))()((| /2/2 NN xwDDxwWDD    

|)()(||)()(| dw
dx

d
Ddw

dx

d
D    

  |)('|
2

1
|)('|

2

1
/23/24 NN xwHxwH   

         .
)()(

)()(
2

2
2

111

1

2
2

2
111

1















 










NC

NC
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Consider the mesh functions ),)(()(=)( iii xwWxx    where for 21,=j , 

  
2

2 ,2 1 2 1 2 2 1

2 2
1 2 ,1 1 1 2 11 1

2 2
1 2 ,1 1 1 2 1

2
22 1

( ) ( ( )), for ( , ),

( ) ( ( )), for ( , ),
( ) =

( ) ( ), for ( , ),

( ) (

N
i i

N
i i

j i N
i i

x d x d d

x d x d d
x C N C N

d x x d d

d

      

    

    

 

     

    


    

   

     

    

 

    

  

      

     


     

  ,2 1 2 1 2
), for ( , ).N

i ix x d d       








    

 

 
Applying the discrete maximum principle to ),( ij x  for 1,2=j  over the interval 

],,[
22

    dd  we get  

2 2
2 ,2 1 1 2 2 1

2 2 2
1 2 ,1 1 2 11 1

2 2 2
1 2 ,1 1 2 1

2 2
2 ,2 1 1 2 1

( ) , for ( , ),

( ) ( ), for ( , ),
| ( )( ) |

( ) ( ), for ( , ),

( ) , for ( ,

N
i

N
i

j j i N
i

N
i

x d d

x d d
W w x C N C N

x d d

x d d

     

   

   

    

    

   

   

   

    

   

 

   

   

    

   
  

   

   
2
).












 

                   ),(for,)ln(
222,1

21     ddxNNC N
i , 

 
which is the required result.  
 
Now we complete the proof by considering the case where at least one of the four transition 

points take the value .
2

1
=and

4

1
=,

2
=,

4
=

2121

dddd  
    

 
In all such cases NC ln1

1   and .ln1
2 NC  We have for 21,=j ,  

 
|)(|)()(|)(|)(|))((| '

1
'

11 ijiiijijiijij
N
j xwxxxaxwxxxwLWL 




   21 )ln( NCN   

and  
|)()(|=|))()((| /2/2 NjNjj xwDDxwWDD   .)ln( 21 NNC   

 
Using the mesh functions  
 










 

,1)(for),(1

)(0,for,)(1
)ln(=)(

2,1

2,121

dxxd

dxxd
NNCx

ii

ii

ij



 

 
and applying the discrete maximum principle across the entire domain ,

2,1

N
  we get the 

required result.  
 

Theorem 3.5.  
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Let Txyxyxy ))(),((=)( 21  be the solution of (1) - (2) and let T

iii xYxYxY ))(),((=)( 21  be the 

corresponding numerical solution of (7) - (8). Then, we have  
 

.)ln(||||and)ln(|||| 21

2,1
22

21

2,1
11 NNCyYNNCyY NN











 

  
Proof: 
 
Proof follows immediately, if one applies the above Lemmas 3.3 and 3.4 to 

.= wWvVyY    
  

4.  Nonlinear Problems 
 
Consider the nonlinear BVP 
  

,),',,(=)(
0

0

2

2

2

2

 





















xyyxFxy

dx

d
dx

d




 (21) 

,=(1),=(0) 















s

q
y

r

p
y  (22) 

 
where )',,( yyxF  is a function such that  
 

,<0,<<)',,(<,<0,>>)',,(> 2
1

1
*
21

1
1

*
1 xdyyxFdxyyxF

yy
 


 

,<0,<<)',,(<,<0,>>)',,(> 2
2

2
*
21

2
2

*
1 xdyyxFdxyyxF

yy
 


 

       0,)}',,()',,({0,)}',,()',,({
2

2
1

2
2

1
1

1  yyxFyyxFyyxFyyxF
yyyy

 

       .0,)',,(0,)',,(
1

2
2

1  xyyxFyyxF
yy

 

 
 Assume that the BVP (21) - (22) has a unique solution. In order to obtain a numerical solution of 
(21) - (22), the Newton’s method of quasilineraisation is applied. Consequently, with a proper 
choice of initial approximation [0]y  ( xyyyy (0))(1)((0)=[0]   may be a proper initial guess), 

we get a sequence of 
0

][ }{ my  of successive approximations. In fact, we define 1][ my  for each 

fixed non-negative integer m  to be the solution of the linear problem:  

,=
0

0

0

0
1][1][

2

1
1][

2

2

2

2

1][ mmmm

m

m

mmm fyBy

dx

d
a

dx

d
a

y

dx

d
dx

d

yL  












































 (23) 
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,=(1),=(0) 1][1][
















 

s

q
y

r

p
y mm  (24) 

 
where  
 

),',,(=)(),',,(=)( ][][

2
22

][][

1
11

mm

y

mmm

y

m yyxFxayyxFxa


 

 

,
)',,()',,(

)',,()',,(
=

)()(

)()(
=)( ][][

2
2

][][

1
2

][][

2
1

][][

1
1

2221

1211























mm

y

mm

y

mm

y

mm

y

mm

mm
m

yyxFyyxF

yyxFyyxF

xbxb

xbxb
xB  

 
and 

 






















)',,(

)',,(
)',,(=)( ][][

2
2

][
2

][][

1
1

][
1

][][
mm

y

m

mm

y

m

mmm

yyxFy

yyxFy
yyxFxf  

                                           .
)',,()',,(

)',,()',,(

][][

2
2

][
2

][][

1
2

][
1

][][

2
1

][
2

][][

1
1

][
1


















 mm

y

mmm

y

m

mm

y

mmm

y

m

yyxFyyyxFy

yyxFyyyxFy
 

 
From the assumption on )',,( yyxF  it follows that each m , we have  

 
*
1 1 1 1

1

*
2 1 1 2

1

> ( ) = ( , , ') > > 0, < ,

< ( ) = ( , , ') < < 0, < ,

m

y

m

y

a x F x y y x d

a x F x y y d x

 

 



 

 

*
1 2 2 1

2

*
2 2 2 2

2

> ( ) = ( , , ') > > 0, < ,

< ( ) = ( , , ') < < 0, < ,

m

y

m

y

a x F x y y x d

a x F x y y d x

 

 



 

 

 0,)},,(),,({=)}()({ ]['][

2
1

]['][

1
11211  mm

y

mm

y

mm yyxFyyxFxbxb  

 0,)},,(),,({=)}()({ ]['][

2
2

]['][

1
22221  mm

y

mm

y

mm yyxFyyxFxbxb  

  0.),,(=)(0,),,(=)( ]['][

1
221

]['][

2
112  mm

y

mmm

y

m yyxFxbyyxFxb  

 
The problem (23) - (24) for each fixed m , is a linear BVP and is of the form (1) - (2). Hence, it 
can be solved by the our method. We can prove that if the initial approximation (0)y  is 

sufficiently close to )(xy , the Newton sequence 
0=)}({ m

m xy  converge to )(xy . Infact, in Doolan 

et al. (1980) the author’s has proved a similar result for a single nonlinear equation. For the 
above Newton’s quasilinearisation process the following convergence criterion can be used:  
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0,,,|))((| ][1][  mxxyy jj

mm   

 
where   is the prescribed tolerance bound.  
 
 
5.  Numerical Experiments 
 
 In this section, two examples are given to illustrate the numerical method discussed in this paper 
for the BVP (1)-(2).  
 
Example 5.1.  
 





 0.5,1,

0.5,<1,
=)(1 x

x
xa   





 0.5,1,

0.5,<1,
=)(2 x

x
xa  

 












31

13
=)(xB ,  









 0.5,2,

0.5,<4,
=)(

0.5,3,

0.5,<2,
=)( 21 x

x
xf

x

x
xf  

 

 .
0

0
=,

0

0
= 
































s

r

q

p
 

 
 Example 5.2.  
 








0.5,),(1

0.5,<,1
=)(1 xx

xx
xa   








0.5,),(1

0.5,<,1
=)(2 xx

xx
xa  

 












31

13
=)(xB ,  















0.5,,2
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=)(

0.5,,3

0.5,<,2
=)( 21 xx

xx
xf

xx

xx
xf  

 

        .
0

0
=,

0

0
= 
































s

r

q

p
 

 
Let N

jY  be a numerical approximation for the exact solution jy  on the mesh N

2,1   and N  be the 

number of mesh points. The exact solutions to the test problems are not available. For a finite set 
of values of 1  and 2  we compute the maximum pointwise errors for 2,1,=j   
 

,maxmax=,|
~

|max= ,2,1
212,1

2048

,2,1

N
j

N
jNj

N
j

N
j DDYYD 
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where 

2048~
Y is the piecewise linear interpolant of the mesh function 2048

jY  onto [0,1]. The range 

of singular perturbation parameter 8 9 10 33
1 = {2 , 2 , 2 , , 2 }.      From these quantities the 

parameter-uniform order of convergence N
jp  are computed from  

2 2
= , = 1, 2.log

N
jN

j N
j

D
p j

D

 
  
 

 

The computed errors 2)1,=( jDN
j  and the computed order of convergence 2)1,=( jpN

j  are 

tabulated (Tables 1-3). The nodal errors are plotted as graphs (Figures 1-2). 
 
Table 1.  Values of NN pD 11 ,  and NN pD 22 ,  for the solution components 1Y  and 2Y  respectively for 

the Example 5.1 with 7
2 2=   

    Number of mesh points N  
 32  64  128  256  512  

ND1  
Np1  

4.0340e-2 2.3020e-2 1.2591e-2 6.5353e-3 3.0404e-3 

8.0932e-1 8.7049e-1 9.4607e-1 1.1040 - 
ND2  
Np2  

7.4571e-2 4.5565e-2 2.6495e-2 1.4335e-2 6.8671e-3 

7.1069e-1 7.8221e-1 8.8618e-1 1.0618 - 

 
Table 2.  Values of NN pD 11 ,  and NN pD 22 ,  for the solution components 1Y  and 2Y  respectively for 

the Example 5.1 with 12 2=   
   Number of mesh points N  
 32  64  128  256  512  

ND1  
Np1  

4.4617e-2 2.5294e-2 1.3969e-2 7.2117e-3 3.3525e-3 

8.1880e-1 8.5657e-1 9.5382e-1 1.1051 - 
ND2  
Np2  

 6.4090e-2 3.6512e-2 1.9915e-2 1.0213e-2 4.7275e-3 

 8.1173e-1 8.7452e-1 9.6345e-1 1.1113 - 

   
Table 3.  Values of NN pD 11 ,  and NN pD 22 ,  for the solution components 1Y  and 2Y  respectively for 

the Example 5.2 with 7
2 2=   

   Number of mesh points N  
 32  64  128  256  512  

ND1   
Np1   

2.4117e-2 1.5288e-2 8.7279e-3 4.5904e-3 2.1649e-3 

6.5765e-1 8.0869e-1 9.2701e-1 1.0843 - 
ND2   
Np2   

8.0944e-2 5.6433e-2 3.3275e-2 1.9077e-2 9.4286e-3 

5.2039e-1 7.6210e-1 8.0260e-1 1.0167 - 

   
Table 4.  Values of NN pD 11 ,  and NN pD 22 ,  for the solution components 1Y  and 2Y  respectively for 

the Example 5.2 with 12 2=   
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Number of mesh points N  
32  64  128  256  512  

ND1   
Np1   

2.6653e-2  1.6374e-2  9.1051e-3  4.8012e-3   2.2536e-3 

7.0289e-1   8.4666e-1   9.2328e-1 1.0912  - 
ND2   
Np2   

 7.5325e-2  4.3871e-2   2.4740e-2   1.3022e-2  6.1480e-3 

 7.7986e-1   8.2642e-1  9.2601e-1   1.0827 - 

 

 
Figure  1. Nodal error for the component 1Y  and 2Y  of the Example 5.1 

 

            
Figure  2. Nodal error for the component 1Y  and 2Y  of the Example 5.2 

             
6.  Conclusion 
 
 A finite difference method is derived for a system of singularly perturbed convection-diffusion 
equations with discontinuous convection coefficients and source terms. The distinct singular 
perturbation parameters and the discontinuity in the interior domain lead to the overlap and 
interact interior layer in the solution. The numerical method uses a piecewise uniform mesh, 
which is fitted to the interior layer and the upwind finite difference operator on this mesh. 
 
Tables and figures show that the numerical results agree with the theoretical claims. The graphs 
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plotted in the figures 1-2 are convergent curves in the maximum norm at nodal points for the 
different values of 1  and 7

2 2=   for Examples 5.1-5.2. These graphs clearly indicate that the 

optimal error bound is of order ))ln(( 21 NNO   as predicted by Theorem 3.5. 
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