65,688 research outputs found

    Identifying the transporters of different flavonoids in plants

    Get PDF
    We recently identified a new component of flavonoid transport pathways in Arabidopsis. The MATE protein FFT (Flower Flavonoid Transporter) is primarily found in guard cells and seedling roots, and mutation of the transporter results in floral and growth phenotypes. The nature of FFT’s substrate requires further exploration but our data suggest that it is a kaempferol diglucoside. Here we discuss potential partner H+-ATPases and possible redundancy among the close homologues within the large Arabidopsis MATE family

    Nucleation of quark matter in neutron stars cores

    Get PDF
    We consider the general conditions of quark droplets formation in high density neutron matter. The growth of the quark bubble (assumed to contain a sufficiently large number of particles) can be described by means of a Fokker-Planck equation. The dynamics of the nucleation essentially depends on the physical properties of the medium it takes place. The conditions for quark bubble formation are analyzed within the frameworks of both dissipative and non-dissipative (with zero bulk and shear viscosity coefficients) approaches. The conversion time of the neutron star to a quark star is obtained as a function of the equation of state of the neutron matter and of the microscopic parameters of the quark nuclei. As an application of the obtained formalism we analyze the first order phase transition from neutron matter to quark matter in rapidly rotating neutron stars cores, triggered by the gravitational energy released during the spinning down of the neutron star. The endothermic conversion process, via gravitational energy absorption, could take place, in a very short time interval, of the order of few tens seconds, in a class of dense compact objects, with very high magnetic fields, called magnetars.Comment: 31 pages, 2 figures, to appear in Ap

    On numerical integration and computer implementation of viscoplastic models

    Get PDF
    Due to the stringent design requirement for aerospace or nuclear structural components, considerable research interests have been generated on the development of constitutive models for representing the inelastic behavior of metals at elevated temperatures. In particular, a class of unified theories (or viscoplastic constitutive models) have been proposed to simulate material responses such as cyclic plasticity, rate sensitivity, creep deformations, strain hardening or softening, etc. This approach differs from the conventional creep and plasticity theory in that both the creep and plastic deformations are treated as unified time-dependent quantities. Although most of viscoplastic models give better material behavior representation, the associated constitutive differential equations have stiff regimes which present numerical difficulties in time-dependent analysis. In this connection, appropriate solution algorithm must be developed for viscoplastic analysis via finite element method

    Fabrication and test of a space power boiler feed electromagnetic pump. Part 1: Design and manufacture of pump

    Get PDF
    A three-phase helical induction electromagnetic (EM) pump has been designed and built. This pump was designed for use as the boiler-feed pump of a potassium Rankine-cycle space electric power system. The pump is constructed of high temperature materials including a T-111 duct, Hiperco 27 magnetic material, nickel clad silver conductor wire, and a completely inorganic insulation system. The pump is designed to deliver 3.25 lb/sec potassium at 1000 F with a developed head of 240 psi while being cooled by 800 F NaK. At these conditions, the overall pump efficiency is expected to be 18%

    A ratio model of perceived speed in the human visual system

    Get PDF
    The perceived speed of moving images changes over time. Prolonged viewing of a pattern (adaptation) leads to an exponential decrease in its perceived speed. Similarly, responses of neurones tuned to motion reduce exponentially over time. It is tempting to link these phenomena. However, under certain conditions, perceived speed increases after adaptation and the time course of these perceptual effects varies widely. We propose a model that comprises two temporally tuned mechanisms whose sensitivities reduce exponentially over time. Perceived speed is taken as the ratio of these filters' outputs. The model captures increases and decreases in perceived speed following adaptation and describes our data well with just four free parameters. Whilst the model captures perceptual time courses that vary widely, parameter estimates for the time constants of the underlying filters are in good agreement with estimates of the time course of adaptation of direction selective neurones in the mammalian visual system

    Optical Spectroscopy of K-selected Extremely Red Galaxies

    Full text link
    We have obtained spectroscopic redshifts for 24 red galaxies from a sample with median Ks=18.7 and F814W - Ks > 4, using the Keck telescope. These EROshave high resolution morphologies from HST (Yan & Thompson 2003). Among the 24 redshifts, the majority (92%) are at 0.9<z<1.5 0.9 < z < 1.5. We derived the rest-frame J-band luminosity function at zmedian=1.14z_{median} =1.14. Our result suggests that the luminosity evolution between bright EROs at z∼1z\sim 1 and the present-day >>L∗^* massive galaxies is at most about 0.7 magnitude. Combining the morphologies and deep spectroscopy revealed the following properties: (1) 86% of the spectra have absorption features from old stars, suggesting that the dominant stellar populations seen in the rest-frame UV are old stars. 50% of the sources have pure absorption lines, while the remaining 50% have emission lines, indicating recent star formation. We conclude that the color criterion for EROs is very effective in selecting old stellar populations at z∼1z \sim 1, and a large fraction of these systems with prominent old stellar populations also have recent star formation. (2) The 12 emission line systems have the same number of disk and bulge galaxies as in the remaining 12 pure absorption line systems. We conclude that spectral classes do not have a simple, direct correspondence with morphological types. (3) Three EROs could be isolated, pure passively evolving early-type galaxies at z∼1z\sim 1. This implies that only a small fraction (10%--15%) of early-type galaxies are formed in a rapid burst of star formation at high redshifts and evolved passively since then. (Abridged).Comment: 27 pages, 8 figures. Accepted for publication in Astronomical Journal, issue March 200

    Efficient fiber-optical interface for nanophotonic devices

    Get PDF
    We demonstrate a method for efficient coupling of guided light from a single mode optical fiber to nanophotonic devices. Our approach makes use of single-sided conical tapered optical fibers that are evanescently coupled over the last ~10 um to a nanophotonic waveguide. By means of adiabatic mode transfer using a properly chosen taper, single-mode fiber-waveguide coupling efficiencies as high as 97(1)% are achieved. Efficient coupling is obtained for a wide range of device geometries which are either singly-clamped on a chip or attached to the fiber, demonstrating a promising approach for integrated nanophotonic circuits, quantum optical and nanoscale sensing applications.Comment: 7 pages, 4 figures, includes supplementary informatio

    Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb2_2Ti2_2O7_7 in Magnetic Field

    Full text link
    The frustrated pyrochlore magnet Yb2_2Ti2_2O7_7 has the remarkable property that it orders magnetically, but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe in addition to dispersive magnons also a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low and high field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set we re-evaluate the spin Hamiltonian finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.Comment: 5 pages main text + 19 pages supplemental materia

    Mechanisms and Observations of Coronal Dimming for the 2010 August 7 Event

    Get PDF
    Coronal dimming of extreme ultraviolet (EUV) emission has the potential to be a useful forecaster of coronal mass ejections (CMEs). As emitting material leaves the corona, a temporary void is left behind which can be observed in spectral images and irradiance measurements. The velocity and mass of the CMEs should impact the character of those observations. However, other physical processes can confuse the observations. We describe these processes and the expected observational signature, with special emphasis placed on the differences. We then apply this understanding to a coronal dimming event with an associated CME that occurred on 2010 August 7. Data from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) and EUV Variability Experiment (EVE) are used for observations of the dimming, while the Solar and Heliospheric Observatory's (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) and the Solar Terrestrial Relations Observatory's (STEREO) COR1 and COR2 are used to obtain velocity and mass estimates for the associated CME. We develop a technique for mitigating temperature effects in coronal dimming from full-disk irradiance measurements taken by EVE. We find that for this event, nearly 100% of the dimming is due to mass loss in the corona
    • …
    corecore