We consider the general conditions of quark droplets formation in high
density neutron matter. The growth of the quark bubble (assumed to contain a
sufficiently large number of particles) can be described by means of a
Fokker-Planck equation. The dynamics of the nucleation essentially depends on
the physical properties of the medium it takes place. The conditions for quark
bubble formation are analyzed within the frameworks of both dissipative and
non-dissipative (with zero bulk and shear viscosity coefficients) approaches.
The conversion time of the neutron star to a quark star is obtained as a
function of the equation of state of the neutron matter and of the microscopic
parameters of the quark nuclei. As an application of the obtained formalism we
analyze the first order phase transition from neutron matter to quark matter in
rapidly rotating neutron stars cores, triggered by the gravitational energy
released during the spinning down of the neutron star. The endothermic
conversion process, via gravitational energy absorption, could take place, in a
very short time interval, of the order of few tens seconds, in a class of dense
compact objects, with very high magnetic fields, called magnetars.Comment: 31 pages, 2 figures, to appear in Ap