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Due to the stringent design requirement for aerospace or nuclear
structural components, considerable research interests have been gener-
ated on the development of constitutive models for representing the
inelastic behavior of metals at elevated temperatures. In particular,

a class of unified theories (or viscoplastic constitutive models) have
been proposed [1-10] to simulate material responses such as cyclic
plasticity, rate sensitivity, creep deformations, strain hardening or
softening, etc. This approach differs from the conventional creep and
plasticity theory in that both the creep and plastic deformations are
treated as unified time-dependent quantities. Although most of visco-
plastic models give better material behavior representation, the associ-
ated constitutive differential equations have stiff regimes which present
numerical difficulties in time-dependent analysis. In this connection,
appropriate solution algorithm must be developed for viscoplastic
analysis via finite element method.

In the past, inelastic finite element structural analyses were per-
formed largely based on the classical concept of creep and plasticity
[11-14]. Recently, some attempts have been made to incorporate a speci-
fic type of viscoplastic theories-into finite element codes [15-20] for
structural analysis. In this paper, three integration schemes are
implemented into a nonlinear finite element program [21] to study their
numerical efficiency pertaining to finite element analysis. Moreover,
four viscoplastic models, namely, those due to Walker, Miller, Krieg-
Swearingen-Rohde, and Robinson, were implemented into a finite element
program for nonlinear analysis. A general implementation procedure is
outlined in the paper.
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VISCOPLASTIC THEORIES

The basic assumption embodied in viscoplastic theories is the
unified treatment of inelastic strain; i.e. no distinction is given to
creep and plastic deformations. In addition, both elastic and inelastic
strains are considered to be present at all stages of loading and un-
loading processes. The unique feature of such treatment, as compared to
classical theories, is that the yield condition is not explicitly in-
volved. Consequently, the computational algorithm for compléx loading
history can be much simplified. In the context of smail deformation,
viscoplastic models may be written in the following general form

o = D% - (2Gel + & (A + 36)yT) (1)
el = flo aKT) (0 - a) (2)
~ ~I~l ] ~ ~
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where ( ) = Time devative; T = Temperature;

e = Total strain vector; o = Stress vector;

a = Back stress vector; K = Drag stress;

DE s

» = Elasticity matrix; A,G = Lame contant;
el = Inelastic strain vector;

<
[1]

Linear thermal expansion coefficient;

-
[[]

Inelastic strain rate function;
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Hardening functions for back and drag stresses, respectively;

Ngsh
rqasfk = Recovery functions for back and drag stresses, respectively.

Eqs. (1-4) represent a complete set of viscoplastic constitutive
equations wherein the following assumptions are invoked in the extention
from uniaxial case to the three-dimensional case, namely, i) isotropic
material, ii) incompressible inelastic strain, and iii) linear bulk be-
havior. Eq. (1) defines stress rate to be proportional to elastic strain
rate while Eq. (2) states the functional dependence of inelastic strain
rate on applied stress, temperature, and state variables. Furthermore,
Eqs. (3-4), so-called evolutional equations, are generally constructed in
hardening/recovery form such that the net effect of two antagonistic
mechanisms uniquely determines the growth rate of state variables a and
Ko

Although the mathematical expressions of viscoplastic models pro-
posed by various researchers differ in their detailed descriptions, they
do however portray several common- phenomena: i) Initial linear elastic
behavior wherein the inelastic effect is negligible and then nonlinear
response afterwards, ii) strain-rate sensitivity, iii) time-dependent
creep and relaxation, iv) cyclic hardening or softening, v) creep recov-
ery, vi) creep plasticity interactions, and vii) Bauschinger's effect.

NUMERICAL INTEGRATION SCHEMES

For finite element applications, it is useful to choose an appro-
priate integration scheme for handling the nonlinear viscoplastic
equations concerned. Krieg (22) pointed out the existance of numerical
stiff regions in viscoplastic formulation together with a discussion of
potential difficulties. The stiffness of the equations originates from
the nonlinear relationship assumed in Eq. (1) and the hardening/recovery
form in evolutional equations. Formal definition of the stiffness of a
set of differential equations can be found in Ref.(23) where the measure
of "stiffness" is given in terms of the Spectra of eigenvalues obtained
from the Jacobian matrix of associated equation system.

Numerical approaches intended for integrating stiff differential
equations have been developed by a number of researchers. Among them

189



Gear's method is the most famous one. Although Gear's package has been
used quite effectively in solving one-dimensional constitutive equations,
(1) it is not suitable for large scale finite element analysis simply
because its solution procedure is of a multistep nature. When employed
in finite element analysis, this'method usually requires a large amount
of storage in order to follow the deformation history of the material.
For this reason, one-step method is much preferable.

For the purpose of discussion, the constitutive equations are re-
written as follows

= fly t) (5)

~ o~

L

3

where y represents stress, inelastic strain and state variables while f
denotes nonlinear functions. One-step method for solving inelastic rate
problems in the field of finite element has been investigated by several
researchers (24-26). 1In a broad sense, it can be written in terms of
one-parameter (8) family of implicit algorithm (the - method) as follows.

Yo+l = ¥n ¥ otp [ (1-8) fn + 8 fpal ] (6)
where At = tp+] - tp is the n-th time step size and 8 is an integration
parameter which has the range of (0,1). In Eq. (6) it is assumed that a
numerical solution at the beginning of time step n is known, the solution
at the end of the step is to be sought.

The simplest integration scheme is the explicit forward Euler scheme
corresponding to 6 = 0. It is an explicit scheme since the solution at
time tps+] is completely determined from conditions existing at time tp.
Therefore, in the forward Euler method, the solution at time tp4) is
approximated by

Yn+l = ¥n * otpfp (7)
When this method is employed in solving stiff equations, very small step
size must be used in order to obtain stable and accurate solutions.
On the other hand, the case 6 = 1/2 results in the so-called impli-
cit trapezoidal scheme which is also widely known as Crank-Nicholson rule
in the context of linear differential equations. Then
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At

¥n+l = ¥n + T (£q + £n41) (8)

Note that fo41 = f(yp+1, tp+1) is unknown. Nonlinear implicit equation

~ ~

is best solved by the Newton-Raphson iteration. To this end, Eq. (8) is
rewritten in the form

i i i
Fnel = Yn+el = yn - Atp(fpe1 + fp )/2 = 0 (9)

~ ~ ~

The right superscript "i" denotes iteration number. Since y, and fn are
known, Newton-Raphson iteration gives

i
L I £n+l (10)
<o+l ~n+l i i
3En+1/ Nnn

Rearranging Eq. (10) yields

i i
a£n+1 =1 - Atna,fn+l (11)
—_ = —
a-Y-n+1 2 QZn+1
Defining
i+l (i+1) i

Ay =y -y v (12)
~n+l ~n+l ~n+l

and performing differentiation, one obtains

i
at_ af
_t o™ g poat i (13)
(1 - 2, ]Axn+1 “Xp Tt Xt (4 LIPS
Yn+l
1
where the initial value of y may be obtained by an explicit scheme.

n+l

Eq. (13) stands for a linear system of equations for implicit trape-
zoidal method. The system is readily solved by Gaussian elimination and
backward substitution. If this method is employed in an analysis, the
immediate question is: how one can determine whether the solution has
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converged or not? In fact, several convergence criteria could be used
for this purpose. One convenient way is to check the iterative value of
y such that

i
e = ||--é§§—(-—l || <Tol (14)

Euclidean norm
A tolerance ratio

where [l 11
Tol
Presently, the above criterion is employed to determine the convergence

of a solution.

Comparing Eqs. (7) & (13), it is apparent that the implicit trape-
zoidal method requires not only much more functional evaluations but also
solving a system of linear equations. As an alternative, the implicitness
of fh+1 in Eq. (8) may be removed by using Talor series expansion, namely,

~

fael = fn + Jndyn+l (15)
where )
Jn = 3fp/dyp (16)
Thus, Eq. (13) becomes
[1 - Jpat/2]ay, = ot fj | , (17)

E- = ~

The above equation is referred as the explicit trapezoidal scheme since
the solution is completely determined from the initial conditions.

At this point, it is instructive to make some qualitative comparisons
among the aforementioned numerical schemes. Comparing explicit trapezoi-
dal scheme with forward Euler scheme reveals that they differ only in the
expression Jpat/2, i.e. the product of Jacobian matrix and half of step
size. The addition of such matrix necessitates the solution be obtained
by solving a system of simultaneous equations. Like implicit trapezoidal
scheme, it also requires the evaluations of Jacobian matrix. Apparently,
by including the extra term, the numerical behavior of the constitutive
equations have become stabilized. In this context, Jyat/2 essentially
plays the role of a correcting factor. On the other hand, since no itera-

192



tion is involved in the explicit trapezoidal scheme, it can be viewed as a
starter of implicit trapezoidal scheme.

We consider another extreme case, i.e. 8 = 1, which is called imoli-
cit Euler scheme,

Yn+l = ¥Yn + 8%pfp4 (18)

~ ~ ~

Hughes et al (24) demonstrated that for viscoplastic finite element anal: -
sis one-parameter family of implicit algorithm is unconditionally stable
when 8 > 1/2 while only conditionally stable otherwise. In recent years,
variods rumerical schemes have been applied to viscoplastic problems
(15-20,24-26). Some of the authors have discarded the explicit Euler
method due to its numerical instability. However, the validity of this
conciusion needs to be further explored. In Ref., (27), present investi-
gators evaluated three numerical techniques for integrating the visco-
plastic constitutive'equations for a uniaxial state of stress. The
schemes evaluated were: i) forward Euler method, i) explicit trapezoidal
method, and iii) implicit trapezoidal method with Newton-Raphson itera-
tion method. Although implicit trapezoidal method with iteration appears
to be more stable and accurate than the other methods even when the step
size is considerable large, its suitability for finite element analysis
must be re-assessed.

In principle, inelastic analysis using finite element method con-
sists of a sequence of incremental process. Two most widely used
approaches are the initial strain and tangent stiffness methods. In con-
sideration of the formulation presented in Eqs. (1-4), one finds that the
initial strain method is the most natural way to handle viscoplastic
models. The reason behind this will be elaborated below.

In Eq. (1), we invoke an assumption that the strain increment is
decomposed into elastic and inelastic components. Then, the inelastic
part, which is governed entirely by Eqs. (1-4) at constitutive level, is
converted into an equivalent load in the finite element formulation.
Thus, we have

KEau = (apg) + (555) (19)
where ,
KE = Elastic structural stiffness matrix, which may vary with
the temperature
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Au = Incremental nodal displacement vector
apy = Incremental vector of applied load
ape = Incremental vector due to inelastic and thermal strains.

In addition to the incremental procedure used for solving the global
stiffness equations, a subincrementing technique is employed to calculate
the constitutive material matrix. That is, let At be the time increment
for solving the global stiffness equations. Then At is sub-divided into
smaller increments with a constant step size, At = At/m. Moreover, the
number of subincrements can be determined by an automatic stepping pro-
cedure for which an error measure is compared with a specified tolerance.
Further discussion of this is given in [27].

COMPUTER IMPLEMENTATION

With the constitutive relations and numerical integration schemes
outlined in the previous sections, the next step is to implement these
relationships into a typical (general purpose) finite element program for
intended analysis. For this purpose, the related computer subroutines
are written in the form of an independent material module so that it can
be easily interfaced with a finite element code.

The calculation steps for a viscoplastic model can be summarized as
follows: _

Step 1. Preset the strains, stresses, back stresses, inelastic strains,
nodal temperatures, etc. transferred from the main program.

Step 2. For non-isothermal condition, interpolate temperature at Gauss
points from nodal temperatures.

Step 3. Compute strain rate and temperature rate, and select step size
of subincrements.

Step 4. Interpolate temperature dependent material constants based on
the average temperature at the mid-point of a time step.

Step 5. Solve for the state variables from the constitutive equations
using a subincrementing method with a selected integration
technique.

Step 6. Check for solution tonvergence and determine whether cut-back of
step size is necessary.
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Step 7. Update the stresses, strains, inelastic strains and other state
variables, then return to the main program.

EXAMPLE

To demonstrate the utility of the finite element procedures, Robin-
son's unified theory was applied to the analysis of a pressurized thick-
walled cylinder which is restrained in its axial direction. Finite
element mesh, its dimension and boundary condition are shown in Fig.l.
The loading history consists of a 0.0028 hour ramp up to an internal
pressure of 3.65 ksi followed by a hold period at that temperature for
200 hours. Explicit trapezoidal method was employed for this example.

Figs. 2 to 3 show the predicted redistribution of hoop and axial
stress at several selected time following rapid pressurization, wherein
zero time denotes the end of the loading ramp. As can be seen, while the
internal pressure is held constant, these stresses undérgo variation
exhibiting rapid redistribution followed by a steady-steady response.
The tendency of approaching to a saturated state is apparent.

Figs. 4 and 5 show the creep displacement at the outside wall of
thick-walled cylinder using both Euler and explicit trapezoidal scheme
with different time step sizes as well as number of subincrements. Solid
line indicates the base-line solution using the explicit trapezoidal
scheme. From the numerical experiments, it was found that the forward
Euler integration scheme with an automatic stepping and error control is
far more efficient in computation as compared to the explicit and impli-
cit trapezoidal schemes.
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Fig. 1 - A Thick Wall Cylinder Under Internal Pressure
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