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Due to the stringentdesign requirementfor aerospaceor nuclear

structuralcomponents,considerableresearchinterestshave been gener-

ated on the developmentof constitutivemodels for representingthe

inelasticbehaviorof metals at elevatedtemperatures. In particular,

a class of unifiedtheories (or viscoplasticconstitutivemodels)have

been proposed [1-10]to simulatematerial responsessuch as cyclic

plasticity,rate sensitivity,creep deformations,strain hardeningor

softening,etc. This approachdiffersfrom the conventionalcreep and

plasticitytheory in that both the creep and plasticdeformationsare

treated as unifiedtime-dependentquantities. Althoughmost of visco-

plasticmodels give bettermaterialbehavior representation,the associ-

ated constitutivedifferentialequationshave stiff regimeswhich present

numericaldifficultiesin time-dependentanalysis. In this connection,

appropriatesolutionalgorithmmust be developedfor viscoplastic

analysis via finite elementmethod.

In the past, inelasticfinite elementstructuralanalyseswere per-

formed largelybased on the classicalconceptof creep and plasticity

[11-14]. Recently,some attemptshave been made to incorporatea speci-

fic type of viscoplastictheories.intofinite elementcodes [15-20]for

structuralanalysis. In this paper,three integrationschemesare

implementedinto a nonlinearfinite elementprogram [21] to study their

numericalefficiencypertainingto finite elementanalysis. Moreover,

four viscoplasticmodels,namely,those due to Walker,Miller, Krieg-

Swearingen-Rohde,and Robinson,were implementedinto a finiteelement

program for nonlinearanalysis. A generalimplementationprocedureis

outlined in the paper.
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VISCOPLASTICTHEORIES

The basic assumptionembodiedin viscoplastictheoriesis the

unifiedtreatmentof inelasticstrain;i.e. no distinctionis given to

creep and plasticdeformations. In addition,both elasticand inelastic

strains are consideredto be presentat all stages of loadingand un-

loadingprocesses• The unique featureof such treatment,as comparedto

classicaltheories,is that the yield conditionis not explicitlyin-

volved. Consequently,the computationalalgorithmfor complexloading

historycan be much simplified• In the contextof small deformation,

viscoplasticmodels may be written in the followinggeneralform

• .= DE - (2GoI + _ (X + 3G)yT) (i)

_I = f(o _ K T) (o -_) (2)

2

= = h=¢ - r= (3)

I

k = hkl¢ I - rk (4)

where ( ) = Time devative; T = Temperature;

€ = Total strain vector; a = Stress vector;

= Back stress vector; K = Drag stress;

DE
. = Elasticitymatrix; L,G = Lame contant;

€I = Inelasticstrain vector;

y = Linear thermal expansioncoefficient;

f --Inelasticstrain rate function;
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h:,hk = Hardeningfunctionsfor back and drag stresses,respectively;

r:,rk = Recovery functionsfor back and drag stresses,respectively.

Eqs. (1-4) representa completeset of viscoplasticconstitutive

equationswhereinthe followingassumptionsare invokedin the extention

from uniaxialcase to the three-dimensionalcase, namely,i) isotropic

material, ii) incompressibleinelasticstrain,and iii) linear bulk be-

havior. Eq. (1) definesstress rateto be proportionalto elasticstrain

rate while Eq. (2) states the functionaldependenceof inelasticstrain

rate on appliedstress,temperature,and state variables. Furthermore,

Eqs. (3-4),so-calledevolutionalequations,are generallyconstructedin

hardening/recoveryform such that the net effect of two antagonistic

mechanismsuniquely determinesthe growth rate of state variables: and

k.

Although the mathematicalexpressionsof viscoplasticmodels pro-

posed by various researchersdiffer in their detaileddescriptions,they

do howeverportrayseveralcommon phenomena:i) Initiallinearelastic

behaviorwherein the inelasticeffect is negligibleand then nonlinear

responseafterwards,ii) strain-ratesensitivity,iii) time-dependent

creep and relaxation,iv) cyclichardeningor softening,v) creep recov-

ery, vi) creep plasticityinteractions,and vii) Bauschinger'seffect.

NUMERICALINTEGRATIONSCHEMES

For finite elementapplications,it is useful to choose an appro-

priate integrationscheme for handlingthe nonlinearviscoplastic

equationsconcerned. Krieg (22) pointedout the existanceof numerical

stiff regionsin viscoplasticformulationtogetherwith a discussionof

potentialdifficulties. The stiffnessof the equationsoriginatesfrom

the nonlinearrelationshipassumedin Eq. (1) and the hardening/recovery

form in evolutionalequations. Formal definitionof the stiffnessof a

set of differentialequationscan be found in Ref.(23)where the measure

of "stiffness"is given in terms of the spectraof eigenvaluesobtained

from the Jacobian matrix of associatedequationsystem.

Numericalapproachesintendedfor integratingstiff differential

equationshave been developedby a numberof researchers.Among them
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Gear's method is the most famousone. Although Gear's packagehas been

used quite effectivelyin solvingone-dimensionalconstitutiveequations,

(1) it is not suitablefor large scale finite elementanalysissimply

because its solutionprocedureis of a multistepnature• When employed

in finite elementanalysis,this method usually requiresa large amount

of storagein order to followthe deformationhistoryof the material.

For this reason,one-stepmethod is much preferable,

For the purposeof discussion,the constitutiveequationsare re-

written as follows

y = f(y t) (5)

where y representsstress,inelasticstrain and state variableswhile f

denotes nonlinearfunctions• One-stepmethod for solvinginelasticrate

problems in the field of finite elementhas been investigatedby several

researchers(24-26). In a broad sense, it can be written in terms of

one-parameter(B) family of implicitalgorithm(the -method) as follows.

Yn+1 = Yn ¥atn [ (1-o)fn + o fn+l ] (6)

where Atn = tn+I - tn is the n-th time step size and 0 is an integration

parameterwhich has the range of (0,1). In Eq. (6) it is assumedthat a

numericalsolutionat the beginningof time step n is known,the solution

at the end of the step is to be sought•

The simplestintegrationscheme is the explicitforwardEuler scheme

correspondingto e = O. It is an explicitschemesince the solutionat

time tn+1 is completelydeterminedfrom conditionsexistingat time tno

Therefore,in the forwardEuler method,the solutionat time tn+1 is

approximatedby

Yn+1 = Yn + atnfn (7)

When this method is employedin solvingstiff equations,very small step

size must be used in order to obtain stableand accuratesolutions.

On the other hand, the case (3= 1/2 resultsin the so-calledimpli-

cit trapezoi6alschemewhich is also widely known as Crank-Nicholsonrule

in the contextof linear differentialequations. Then
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Atn

_n+l : _n + 7 (£n + £n+l) (8)

Note that fn+l = f(Yn+l,tn+l) is unknown. Nonlinearimplicitequation

is best solved by the Newton-Raphsoniteration. To this end, Eq. (8) is

rewrittenin the form

i i i

Fn+1 = Yn+1 " Yn - a1_n(fn+l+ fn )/2 : 0 (9)

The right superscript"i" denotes iterationnumber. Since Yn and fn are

known, Newton-Raphsoniterationgives

(io)_i+1 i
n+l : _n+l" i i

BFn+I/ B_n+l

RearrangingEq. (10)yields

• Atn_fnll
B-"+IF-I": I - ~ (Ii)

@i _" i
_n+1 2 @_Yn+l

Defining

i+I (i+1) i

ay = y - y (12)
~n+l ~n+l ~n+l

and performingdifferentiation,one obtains

atn _fin+l At
i+1 i i (13)

[I - 2 i ]a_n+1 : Zn " _n+l + 2 (fn + fn+1 )
@Yn+l

I

where the initialvalue of y may be obtainedby an explicitscheme.
n+1

Eq. (13) stands for a linear systemof equationsfor implicittrape-

zoidal method. The system is readilysolved by Gaussianeliminationand

backward substitution. If this method is employedin an analysis,the

immediatequestion is: how one can determinewhether the solutionhas
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convergedor not? In fact, severalconvergencecriteriacould be used

for this purpose. One convenientway is to check the iterativevalue of

y such that

e = II Ay(i)y II <Tol (14)

where II II = Euclideannorm

Tol = A toleranceratio

Presently,the above criterionis employedto determinethe convergence

of a solution.

ComparingEqs. (7) & (13), it is apparentthat the implicittrape-

zoidal method requiresnot only much more functionalevaluationsbut also

solving a system of linear equations. As an alternative,the implicitness

of fn+l in Eq. (8) may be removedby using Talor series expansion,namely,

fn+1 = fn + JnAYn+1 (15)

where

Jn = _fn/BYn (16)

Thus, Eq. (13) becomes

[I - Jnat/2]Ayn = At fn (17)

The above equationis referredas the explicittrapezoidalscheme since

the solutionis completelydeterminedfrom the initialconditions.

At this point, it is instructiveto make some qualitativecomparisons

among the aforementionednumericalschemes. Comparingexplicittrapezoi-

dal schemewith forwardEuler scheme revealsthat they differ only in the

expressionJnAt/2,i,e. the productof Jacobianmatrix and half of step

size. The addition of such matrix necessitatesthe solutionbe obtained

by solving a systemof simultaneousequations. Like implicittrapezoidal

scheme, it also requiresthe evaluationsof Jacobianmatrix. Apparently,

by includingthe extra term, the numericalbehaviorof the constitutive

equationshave become stabilized. In this context,JnAt/2 essentially

plays the role of a correctingfactor. On the other hand, since no itera-
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tion is involved in the explicit trapezoidal scheme, it can be viewed as a

starter of implicit trapezoidal scheme.

We consider another extreme case, i.e. e = l, which is called imoli-

cit Euler scheme,

Yn+l = Yn + Atnfn+l (18)

Hughes et al (24-)demonstratedthat for viscoplasticfinite elementanal'v-

sis one-parameterfamily of implicitalgorithmis unconditionallystable

when _ > 1/2 while only conditionallystable otherwise. In recentyears,

varioes ;:umericalschemeshave beenapplied to viscoplasticproblems

(15-20,24-26). Some of the authorshave discardedthe explicitEuler

method due to its numericalinstability. However,the validityof this

conclusion needs to be furtherexplored. In Ref. (27), presentinvesti-

gators evaluatedthree numericaltechniquesfor integratingthe visco-

plastic constitutiveequationsfor a uniaxial state of stress. The

schemes evaluatedwere: i) forwardEuler method, ii) explicittrapezoidal

method, and iii) implicittrapezoidalmethod with Newton-Raphsonitera-

tion method. Although implicittrapezoidalmethod with iterationappears

to be more stable and accuratethan the other methods evenwhen the step

size is considerablelarge,its suitabilityfor finite elementanalysis

must be re-assessed.

In principle,inelasticanalysisusing finite elementmethod con-

sists of a sequenceof incrementalprocess. Two most widely used

approachesare the initialstrain and tangentstiffnessmethods. In con-

siderationof the formulationpresentedin Eqs. (1-4),one finds that the

initial strain method is the most naturalway to handle viscoplastic

models. The reasonbehind this will be elaboratedbelow.

In Eq. (1),we invoke an assumptionthat the strain incrementis

decomposedinto elasticand inelasticcomponents. Then, the inelastic

part, which is governedentirelyby Eqs. (I-4)at constitutivelevel, is

convertedinto an equivalentload in the finite elementformulation.

Thus, we have

KEAu = (apo) + (ape) (19)

where

KE = Elasticstructuralstiffnessmatrix,which may varywith

the temperature
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Au = Incrementalnodaldisplacementvector

Apo = Incrementalvectorof appliedload

Ape = Incrementalvectordueto inelasticandthermalstrains.

In additionto the Incrementalprocedureused for solvingthe global

stiffnessequations,a subincrementingtechniqueis employedto calculate

the constitutivematerialmatrix. That is, let At be the time increment

for solvingthe globalstiffnessequations. Then At is sub-dividedinto

smaller incrementswith a constantstep size, A_ = At/m. Moreover,the

number of subincrementscan be determinedby an automaticsteppingpro-

cedure for which an error measureis comparedwith a specifiedtolerance.

Further discussionof this is given in [27].

COMPUTER IMPLEMENTATION

With the constitutiverel.ationsand numericalintegrationschemes

outlined in the previous sections,the next step is to implementthese

relationshipsinto a typical (generalpurpose) finiteelementprogramfor

intended analysis. For this purpose,the relatedcomputersubroutines

are written in the form of an independentmaterialmodule so that it can

be easily interfacedwith a finite elementcode.

The calculationsteps for a viscoplasticmodel can be summarizedas ""

follows:

Step i. Preset the strains,stresses, back stresses,inelasticstrains,

nodal temperatures,etc, transferredfrom the main program.

Step 2. For non-isothermalcondition,interpolatetemperatureat Gauss

points from nodal temperatures.

Step 3. Compute strain rate and temperaturerate, and selectstep size

of subincrements,

Step 4. Interpolatetemperaturedependentmaterial constantsbased on

the averagetemperatureat the mid-pointof a time step,

Step 5, Solve for the state variablesfrom the constitutiveequations

using a subincrementingmethodwith a selectedintegration

technique.

Step 6. Check for solutionconvergenceand determinewhether cut-backof

step size is necessary.
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Step 7. Update the stresses,strains,inelasticstrainsand other state

variables,then returnto the main program.

EXAMPLE

To demonstratethe utilityof the finite elementprocedures,Rdbin-

sonSs unifiedtheory was appliedto the analysisof a pressurizedthick-

walled cylinderwhich is restrainedin its axial direction. Finite

elementmesh, its dimensionand boundaryconditionare shown in Fig.l.

The loadinghistoryconsistsof a 0.0028 hour rampup to an internal

pressure of 3.65 ksi followedby a hold period at that temperaturefor

200 hours. Explicittrapezoidalmethod was employedfor this example.

Figs. 2 to 3 show the predictedredistributionof hoop and axial

stress at severalselectedtime followingrapid pressurization,wherein

zero time denotesthe end of the loadingramp. As can be seen, while the

internalpressure is held constant,these stressesundergo variation

exhibitingrapid redistributionfollowedby a steady-steadyresponse.

The tendencyof approachingto a saturatedstate is apparent.

Figs. 4 and 5 show the creep displacementat the outsidewall of

thick-walledcylinderusing both Euler and explicittrapezoidalscheme

with differenttime step sizes as well as number of subincrements. Solid

line indicatesthe base-linesolutionusing the explicittrapezoidal

scheme. From the numericalexperiments,it was found that the forward

Euler integrationschemewith an automaticsteppingand error controlis

far more efficientin computationas comparedto the explicitand impli-

cit trapezoidalschemes.
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